Publication trimestrielle du Laboratoire
d'analyse et d'architecture des systèmes du CNRS
La motivation principale de cette thèse est de faire face à l'accroissement de la complexité des systèmes informatiques, qui, dans un futur proche (de l'ordre de quelques années) risque fort d'être le principal frein à leur évolution et à leur développement. Aujourd'hui la tendance s'inverse et le coût de gestion humaine dépasse le coût des infrastructures matérielles et logicielles. De plus, l'administration manuelle de grands systèmes (applications distribuées, réseaux de capteurs, équipements réseaux) est non seulement lente mais aussi sujette à de nombreuses erreurs humaines.Un des domaines de recherche émergent est celui de l'informatique autonomique qui a pour but de rendre ces systèmes auto-gérés. Nous proposons une approche qui permet de décrire des politiques de gestion autonomiques de haut niveau. Ces politiques permettent au système d'assurer quatre propriétés fondamentales de l'auto-gestion: l'auto-guérison, l'auto-configuration, l'auto-protection et l'auto-optimisation. Nos contributions portent sur la spécification de diagrammes de description de politiques de gestion autonomiques appelés (S)PDD "(Sensor) Policy Description Diagrams". Ces diagrammes sont implémentés dans le gestionnaire autonomique TUNe et l'approche a été validée sur de nombreux systèmes: simulation électromagnétique répartie sur grille de calcul, réseaux de capteurs SunSPOT, répartiteur de calcul DIET. Une deuxième partie présente une modélisation mathématique de l'auto-optimisation pour un « datacenter». Nous introduisons un problème de minimisation d'un critère intégrant d'une part la consommation électrique des équipements du réseau du « datacenter » et d'autre part la qualité de service des applications déployées sur le « datacenter ». Une heuristique permet de prendre en compte les contraintes dues aux fonctions de routage utilisées.