Publication trimestrielle du Laboratoire
d'analyse et d'architecture des systèmes du CNRS
A mesure que les demandes dans le domaine de l'électronique de puissance tendent vers des conditions de plus en plus extrêmes (forte densité de puissance, haute fréquence, haute température,...), l'évolution des systèmes de traitement de l'énergie électrique se heurte aux limites physiques du silicium. Une nouvelle approche basée sur l'utilisation des matériaux semi-conducteurs grand gap permettrait de lever ces limites. Parmi ces matériaux, le diamant possède les propriétés les plus intéressantes pour l'électronique de puissance: champ de rupture et conductivité thermique exceptionnels, grandes mobilités des porteurs électriques, possibilité de fonctionnement à haute température... Les récents progrès dans la synthèse du diamant par des méthodes de dépôt en phase vapeur (CVD) permettent d'obtenir des substrats de caractéristiques cristallographiques compatibles avec l'exploitation de ces propriétés en électronique de puissance. L'utilisation technologique du diamant reste toutefois difficile : ses propriétés de dureté et d'inertie chimique rendent son utilisation délicate.L'objectif de ces travaux de thèse a été dans un premier temps d'évaluer les bénéfices que pourrait apporter le diamant en électronique de puissance ainsi que l'état de l'art de sa synthèse par dépôt en phase vapeur. Ensuite, différentes étapes technologiques nécessaires à la fabrication de composants sur diamant ont été étudiées: Gravure RIE, dépôt de contacts électriques. Enfin, ces travaux ont été illustrés par la réalisation et la caractérisation de diodes Schottky, dispositifs élémentaires de l'électronique de puissance. Les résultats obtenus permettent d'établir un bilan des verrous scientifiques et technologiques qu'il reste à relever pour une exploitation industrielle de la filière diamant.