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Introductory Comments

@ This talk is highly inspired by the work [1].

@ Related works are, e.g., [2], [3], [4], [5]-

@ The aim is to extend some of the aspects of [1] while focusing on a

deterministic setup.

[1]
2]

(3]

[4]
(5]

Marco et al. “On the design of LQR kernels for efficient controller learning”. 2017
Ferizbegovic et al. “Learning Robust LQ-Controllers Using Application Oriented
Exploration”. 2020

Boczar, Matni, and Recht. “Finite-Data Performance Guarantees for the
Output-Feedback Control of an Unknown System”. 2018

Kober, Bagnell, and Peters. “Reinforcement learning in robotics: A survey”. 2013
Berkenkamp and Schoellig. “Safe and robust learning control with Gaussian processes” .
2015
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Setting and Goal

Let us consider the feedback interconnection

@ A ‘ Bi B, Bs x(t)

Z(t) - C | Di1 D Dy W(t) B

e(t) T | G| Dy Dy D; d(t) | W(t) = Aoz(t)
y(t) / 0 0 0 u( t)

for some uncertain parameter A contained in a known compact set A.
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u(t) = Fux(t)

which stabilizes Ag x P and turns the closed-loop
H. norm is as small as possible.

|.e., we search for a minimizer of the function

J:F = ||Agx P* Flloo.
that stabilizes Ag x P.
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e(t) T | G| Dy Dy D2§ d(t) | W(t) = Aoz(t)
y(t) / 0 0 0 u(t)

for some uncertain parameter A contained in a known compact set A.

Goal: We wish to find a state-feedback controller
u(t) = Fux(t)

which stabilizes Ag x P and turns the closed-loop
H. norm is as small as possible.

|.e., we search for a minimizer of the function

J:F = ||Agx P* Flloo.
that stabilizes Ag x P.

Issue: Finding an (close-to-)optimal controller is difficult as Ag is unknown.

2/15



Standard Design Approaches

Via standard H., design, we can compute for any fixed A € A:

Tnom (B) 1= F stabiIIPZES AxP 1A+ P Flloc-

Goal: We wish to determine y,0m (o) and design a corresponding controller.

3/15



Standard Design Approaches
Via standard H., design, we can compute for any fixed A € A:

Tnom (B) 1= F stabiIIPZES AxP 1A+ P Flloc-
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Via standard robust design (by exploiting knowledge of A), we can compute
upper bounds 7., on the worst-case closed-loop H, norm:

inf Ax P Flla < Yeen.
inf ztérill * Px Flloo < Ysep

Here, we abbreviate the set of robustly stabilizing controllers as
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Via standard H., design, we can compute for any fixed A € A:

Tnom (B) 1= F stabiIIPZES AxP 1A+ P Flloc-

Goal: We wish to determine y,0m (o) and design a corresponding controller.

Via standard robust design (by exploiting knowledge of A), we can compute
upper bounds 7., on the worst-case closed-loop H, norm:

inf Ax P Flla < Yeen.
inf zlérill * Px Flloo < Ysep

Here, we abbreviate the set of robustly stabilizing controllers as

F:={F : F stabilizies A x P for all A € A}.

Clearly, we have
'Ynom(AO) < Vsep

and there might be a very large gap between both values.
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Setting and Goal (Continued)

Additional Assumption: E.g. by running and measuring multiple closed-loop
experiments, the function

J: F — ||AgxP%F||~ can be evaluated for finitely many controllers Fq, ..., Fy.

New Goal: Based on this additional information, find a controller F such that
J(F) = ||A¢ * P % F||oo is much closer to Ynom(Ao) than Yeep-
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Additional Assumption: E.g. by running and measuring multiple closed-loop
experiments, the function

J: F — ||AgxP%F||~ can be evaluated for finitely many controllers Fq, ..., Fy.

New Goal: Based on this additional information, find a controller F such that
J(F) = ||A¢ * P % F||oo is much closer to Ynom(Ao) than Yeep-

The above assumption suggests to perform a numerical minimization of a
function that interpolates the data points

(FlaJ(Fl))a'"7(FN7J(FN))'

This gives rise to the following essential questions.
@ How can suitable test controllers F1, ..., Fy be selected systematically?
@ How can the resulting data points be interpolated?
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Robust Stability

Issue: Stability is a critical property as interconnecting a controller to the
given system that is not stabilizing can lead to catastrophic results.

Remedy: Following [1], we only search for robustly stabilizing controllers in F.

[1] Marco et al. “On the design of LQR kernels for efficient controller learning”. 2017
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Robust Stability

Issue: Stability is a critical property as interconnecting a controller to the
given system that is not stabilizing can lead to catastrophic results.

Remedy: Following [1], we only search for robustly stabilizing controllers in F.

It is not possible to include this safety requirement for free as we usually have

Vnom(AO) - J(F) < A@;J(F)

inf
F stabilizes Ag*xP

@ We show later on how to get closer to Vnom(Ao) by increasing the set of
admissible controllers while still being able to guarantee safe operation.

[1] Marco et al. “On the design of LQR kernels for efficient controller learning”. 2017
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Sampling and Gridding

Issue: It can be difficult to find controllers in F C R™*™ based on gridding or
sampling especially if
@ the dimension of R™*" is large,

® F is an unbounded set or

® F has measure zero in R™*"

Remedy: In contrast to [1], we propose a systematic approach to find such
controllers based on gridding or sampling in the compact set A.
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Motivation

As motivation, let us define the function (assuming it is well-defined)

F:A—-F, A Fecargmin||AxP*Fllo.
FeF

Then F(A) is a robustly stabilizing controller that yields the smallest Ho,
norm of A x P x F among all robustly stabilizing controllers.
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Motivation

As motivation, let us define the function (assuming it is well-defined)

F:A—-F, A~ Fecargmin||A*P* Fll.
FeF

Then F(A) is a robustly stabilizing controller that yields the smallest Ho,
norm of A x P x F among all robustly stabilizing controllers.

By its definition we have

|A*PxF(A)|oo < |AxPxFllos forall FeF andall AcA.

For L:=JoF: A ||Ag*PxF(A)| this implies

H — = < .
inf J(F) = inf Ao x Px Fllow = L(B0) < L(A) forall AcA

Why useful? We can minimize L : A — R instead of J: F — R based on I/O
samples.
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Observations

Observation: A successful minimization of L would even allow to identify the
uncertain parameter Ag if the minimizer is unique.
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Issue: It is not easily possible to compute F(A) or infrep ||A * P x F||lo for
any fixed A € A as we are facing a robust multi-objective problem.

® The underlying problem is nonconvex and also nonsmooth in general.
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Observations

Observation: A successful minimization of L would even allow to identify the
uncertain parameter Ag if the minimizer is unique.

Issue: It is not easily possible to compute F(A) or infrep ||A * P x F||lo for
any fixed A € A as we are facing a robust multi-objective problem.

® The underlying problem is nonconvex and also nonsmooth in general.

However, as for robust controller design we can compute upper bounds on
the optimal value and synthesize corresponding controllers!
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Robust Multi-Objective Design

Lemma 1. Let A € A be fixed. Then there is a controller F € F satisfying
||[Ax P x Flls < 7 if there exist a matrix M and symmetric Y, P satisfying

Y >0,
0 I 0
PeP(A), (s)7 |10 _(AYB&M)T_(QHIDBM)T =0, (RS)
R D},
()7 1o _(AAYKB?M)T_(@YTD?%M)T ~0.  (NPA)
& ~(B8) ~(08)"

If the above LMlIs are feasible, a suitable controller is F := MY 1. Moreover,

i <
nf 185 P Fllos < mo(4)

for ymo(A) being the infimal v such that the above LMIs are feasible.
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Consequences and Remarks

Instead of using F and for ¢ > 0, Lemma 1 suggests to employ the function

Fmo : A — a corresp. close-to-optimal controller (v = (1 + €)Ymo(A))

® Fumo(A) is easily determined by solving a convex semi-definite program.

@ Optimal controllers might be bad conditioned or do not even exist.
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Instead of using F and for ¢ > 0, Lemma 1 suggests to employ the function

Fmo : A — a corresp. close-to-optimal controller (v = (1 + €)ymo(A))

® Fumo(A) is easily determined by solving a convex semi-definite program.

@ Optimal controllers might be bad conditioned or do not even exist.

Finally, we obtain suitable test controllers by choosing

F1:= Fmo(A1),...,Fy := Fmo(An) for samples Aj,..., Ay € A.

® For Lo :=J o Fino, A ||Ag* P xFo(A)||so we have

Tnom(B0) < L(Ao) < Limo(Bo) < (14 €)7mo(Bo)

® A minimizer of L is not necessarily a minimizer of L, and, conversely,
a minimizer of Ly, is not necessarily a minimizer of L.

@ This is due to the conservatism in the convex design.
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Example
Let us consider a slight variation of an example from COMPI.ib [6] with

A= (5/, 0= [71,1], AO = 60/, (50:0.7.
We obtain

Ynom(J0) = 120, min Lino(8) = L1o(0.66) =139 and  7uep = 2.02.
€

[6] Leibfritz. COMPIeib: COnstraint Matrix-optimization Problem library - a collection of
test examples for nonlinear semidefinite programs, control system design and related
problems. 2004
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Example
Let us consider a slight variation of an example from COMPI.ib [6] with

A= (5/, 0= [71, 1], AO = 60/, 50 =0.7.

We obtain

Ynom(J0) = 120, min Lino(8) = L1o(0.66) =139 and  7uep = 2.02.
€

® Minimizing L, leads as desired to better closed-loop H., performance if
compared to robust design.

@ Safe operation is assured as robustly stabilizing controllers are designed.

@ Here IF is a subset of R**® which has dimension 36 and turns sampling or

gridding very tedious.

® The minimizer of L,,, is not necessarily equal to dg.

[6] Leibfritz. COMPIeib: COnstraint Matrix-optimization Problem library - a collection of
test examples for nonlinear semidefinite programs, control system design and related

problems. 2004
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Observations
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Interesting Bonus Feature:
® We can assure that d is contained in [0.65,0.9] as we have inequality

"Ynom((sO) S Lmo((SO) S (1 +5)7m0(50)'
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Observations

251
(1+6)70
2r ] —1L,
mo

15k [T Tnom \

1
05 1 1 1 1 1 1 1 1 1 1

-1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1

Interesting Bonus Feature:
® We can assure that d is contained in [0.65,0.9] as we have inequality

"Ynom((sO) S Lmo((SO) S (1 +5)7m0(50)~
@ This allows to repeat the procedure for A replaced by A= [0.65,0.9]/.

@ This yields even better controllers as easier robust problems are involved:

hom = 1.20, i L =131 e, = 1.00.
Tno (50) 0 66[(?.]6?0.9] 0(6) 31 and Ysep 66
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“Negative” Example

4r
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@ Shrinking A by a large amount is not always possible as the curves do
not have to intersect at all.

@ But it can as well be possible to iteratively apply the shrinking.
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Interpolation /Approximation
Goal: Interpolate/Approximate L,,, with as few evaluations as possible.

@ Evaluating L,,, requires (expensive?) closed-loop experiments.

14/15



Interpolation /Approximation
Goal: Interpolate/Approximate L,,, with as few evaluations as possible.

@ Evaluating L,,, requires (expensive?) closed-loop experiments.

@ In principle any interpolation / approximation scheme can be used.

14/15



Interpolation /Approximation
Goal: Interpolate/Approximate L,,, with as few evaluations as possible.

@ Evaluating L,,, requires (expensive?) closed-loop experiments.
@ In principle any interpolation / approximation scheme can be used.
@ As in [1], we propose a kernel based approach with customized kernels.

@ Allows for an extension to the stochastic setting with Gaussian processes.

14/15



Interpolation /Approximation
Goal: Interpolate/Approximate L,,, with as few evaluations as possible.

@ Evaluating L,,, requires (expensive?) closed-loop experiments.
@ In principle any interpolation / approximation scheme can be used.
@ As in [1], we propose a kernel based approach with customized kernels.

@ Allows for an extension to the stochastic setting with Gaussian processes.

14

14/15



Contents

Conclusions and Outlook



Conclusions and Outlook

Conclusions:

@ Evaluations of closed-loop experiments allow to design safe controllers
with superior performance if compared to a standard robust design.

@ Systematic selection of suitable test controllers.
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Conclusions and Outlook

Conclusions:

@ Evaluations of closed-loop experiments allow to design safe controllers
with superior performance if compared to a standard robust design.

@ Systematic selection of suitable test controllers.

Outlooks:

® (Output-feedback) synthesis based on superior analysis results.
® How to handle time-varying uncertainties?

@ Systematic approaches for higher dimensions.

15/15



s University of
Germany

Thank you!

Tobias Holicki
tobias.holicki@imng.uni-stuttgart.de
University of Stuttgart

Department of Mathematics
Mathematical Systems Theory




	Motivation and Problem Setting
	Selection of Test Controllers
	Conclusions and Outlook

