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Introductory Comments

• This talk is highly inspired by the work [1].

• Related works are, e.g., [2], [3], [4], [5].

• The aim is to extend some of the aspects of [1] while focusing on a
deterministic setup.

[1] Marco et al. “On the design of LQR kernels for efficient controller learning”. 2017
[2] Ferizbegovic et al. “Learning Robust LQ-Controllers Using Application Oriented

Exploration”. 2020
[3] Boczar, Matni, and Recht. “Finite-Data Performance Guarantees for the

Output-Feedback Control of an Unknown System”. 2018
[4] Kober, Bagnell, and Peters. “Reinforcement learning in robotics: A survey”. 2013
[5] Berkenkamp and Schoellig. “Safe and robust learning control with Gaussian processes”.
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Setting and Goal

Let us consider the feedback interconnection
ẋ(t)
z(t)
e(t)
y(t)

 =


A B1 B2 B3

C1 D11 D12 D13

C2 D21 D22 D23

I 0 0 0



x(t)
w(t)
d(t)
u(t)

 , w(t) = ∆0z(t)

for some uncertain parameter ∆0 contained in a known compact set ∆.

Goal: We wish to find a state-feedback controller

u(t) = F ∗x(t)

which stabilizes ∆0 ? P and turns the closed-loop
H∞ norm is as small as possible.

I.e., we search for a minimizer of the function

P

F∗

∆0

z

x u

w

de

J : F 7→ ‖∆0 ? P ? F‖∞.
that stabilizes ∆0 ? P.

Issue: Finding an (close-to-)optimal controller is difficult as ∆0 is unknown.
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Standard Design Approaches

Via standard H∞ design, we can compute for any fixed ∆ ∈ ∆:

γnom(∆) := inf
F stabilizes ∆?P

‖∆ ? P ? F‖∞.

Goal: We wish to determine γnom(∆0) and design a corresponding controller.

Via standard robust design (by exploiting knowledge of ∆), we can compute
upper bounds γsep on the worst-case closed-loop H∞ norm:

inf
F∈F

sup
∆∈∆
‖∆ ? P ? F‖∞ ≤ γsep.

Here, we abbreviate the set of robustly stabilizing controllers as

F := {F : F stabilizies ∆ ? P for all ∆ ∈ ∆}.

Clearly, we have
γnom(∆0) ≤ γsep

and there might be a very large gap between both values.

3 / 15



Standard Design Approaches

Via standard H∞ design, we can compute for any fixed ∆ ∈ ∆:

γnom(∆) := inf
F stabilizes ∆?P

‖∆ ? P ? F‖∞.

Goal: We wish to determine γnom(∆0) and design a corresponding controller.

Via standard robust design (by exploiting knowledge of ∆), we can compute
upper bounds γsep on the worst-case closed-loop H∞ norm:

inf
F∈F

sup
∆∈∆
‖∆ ? P ? F‖∞ ≤ γsep.

Here, we abbreviate the set of robustly stabilizing controllers as

F := {F : F stabilizies ∆ ? P for all ∆ ∈ ∆}.

Clearly, we have
γnom(∆0) ≤ γsep

and there might be a very large gap between both values.

3 / 15



Standard Design Approaches

Via standard H∞ design, we can compute for any fixed ∆ ∈ ∆:

γnom(∆) := inf
F stabilizes ∆?P

‖∆ ? P ? F‖∞.

Goal: We wish to determine γnom(∆0) and design a corresponding controller.

Via standard robust design (by exploiting knowledge of ∆), we can compute
upper bounds γsep on the worst-case closed-loop H∞ norm:

inf
F∈F

sup
∆∈∆
‖∆ ? P ? F‖∞ ≤ γsep.

Here, we abbreviate the set of robustly stabilizing controllers as

F := {F : F stabilizies ∆ ? P for all ∆ ∈ ∆}.

Clearly, we have
γnom(∆0) ≤ γsep

and there might be a very large gap between both values.

3 / 15



Setting and Goal (Continued)

Additional Assumption: E.g. by running and measuring multiple closed-loop
experiments, the function

J : F 7→ ‖∆0?P?F‖∞ can be evaluated for finitely many controllers F 1, . . . ,FN .

New Goal: Based on this additional information, find a controller F such that
J(F ) = ‖∆0 ? P ? F‖∞ is much closer to γnom(∆0) than γsep.

The above assumption suggests to perform a numerical minimization of a
function that interpolates the data points

(F 1, J(F 1)), . . . , (FN , J(FN)).

This gives rise to the following essential questions.

• How can suitable test controllers F 1, . . . ,FN be selected systematically?

• How can the resulting data points be interpolated?
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Robust Stability

Issue: Stability is a critical property as interconnecting a controller to the
given system that is not stabilizing can lead to catastrophic results.

Remedy: Following [1], we only search for robustly stabilizing controllers in F.

It is not possible to include this safety requirement for free as we usually have

γnom(∆0) = inf
F stabilizes ∆0?P

J(F ) < inf
F∈F

J(F ).

• We show later on how to get closer to γnom(∆0) by increasing the set of
admissible controllers while still being able to guarantee safe operation.

[1] Marco et al. “On the design of LQR kernels for efficient controller learning”. 2017
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Sampling and Gridding

Issue: It can be difficult to find controllers in F ⊂ Rnu×ny based on gridding or
sampling especially if

• the dimension of Rnu×ny is large,

• F is an unbounded set or

• F has measure zero in Rnu×ny .

Remedy: In contrast to [1], we propose a systematic approach to find such
controllers based on gridding or sampling in the compact set ∆.
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Motivation

As motivation, let us define the function (assuming it is well-defined)

F : ∆→ F, ∆ 7→ F ∈ arg min
F∈F

‖∆ ? P ? F‖∞.

Then F(∆) is a robustly stabilizing controller that yields the smallest H∞
norm of ∆ ? P ? F among all robustly stabilizing controllers.

By its definition we have

‖∆ ? P ? F(∆)‖∞ ≤ ‖∆ ? P ? F‖∞ for all F ∈ F and all ∆ ∈ ∆.

For L := J ◦ F : ∆ 7→ ‖∆0 ? P ? F(∆)‖∞ this implies

inf
F∈F

J(F ) = inf
F∈F
‖∆0 ? P ? F‖∞ = L(∆0) ≤ L(∆) for all ∆ ∈ ∆.

Why useful? We can minimize L : ∆→ R instead of J : F→ R based on I/O
samples.
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Observations

Observation: A successful minimization of L would even allow to identify the
uncertain parameter ∆0 if the minimizer is unique.

Issue: It is not easily possible to compute F(∆) or infF∈F ‖∆ ? P ? F‖∞ for
any fixed ∆ ∈ ∆ as we are facing a robust multi-objective problem.

• The underlying problem is nonconvex and also nonsmooth in general.

However, as for robust controller design we can compute upper bounds on
the optimal value and synthesize corresponding controllers!
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Robust Multi-Objective Design

Lemma 1. Let ∆ ∈ ∆ be fixed. Then there is a controller F ∈ F satisfying
‖∆ ? P ? F‖∞ < γ if there exist a matrix M and symmetric Y , P satisfying

Y � 0,

P∈P(∆), (•)T
0 I
I 0

P




I 0
−(AY +B3M)T −(C1Y +D13M)T

0 I
−BT

1 −DT
11

 � 0, (RS)

(•)T
0 I
I 0

P−1
γ




I 0
−(A∆Y +B∆

3 M)T −(C∆
2 Y +D∆

23M)T

0 I
−(B∆

2 )T −(D∆
22)T

 � 0. (NP∆)

If the above LMIs are feasible, a suitable controller is F := MY−1. Moreover,

inf
F∈F
‖∆ ? P ? F‖∞ ≤ γmo(∆)

for γmo(∆) being the infimal γ such that the above LMIs are feasible.
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Consequences and Remarks

Instead of using F and for ε > 0, Lemma 1 suggests to employ the function

Fmo : ∆ 7→ a corresp. close-to-optimal controller (γ = (1 + ε)γmo(∆))

• Fmo(∆) is easily determined by solving a convex semi-definite program.

• Optimal controllers might be bad conditioned or do not even exist.

Finally, we obtain suitable test controllers by choosing

F 1 := Fmo(∆1), . . . ,FN := Fmo(∆N) for samples ∆1, . . . ,∆N ∈ ∆.

• For Lmo := J ◦ Fmo, ∆ 7→ ‖∆0 ? P ? Fmo(∆)‖∞ we have

γnom(∆0) ≤ L(∆0) ≤ Lmo(∆0) ≤ (1 + ε)γmo(∆0)

• A minimizer of L is not necessarily a minimizer of Lmo and, conversely,

a minimizer of Lmo is not necessarily a minimizer of L.

• This is due to the conservatism in the convex design.
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Example
Let us consider a slight variation of an example from COMPleib [6] with

∆ := δI , δ := [−1, 1], ∆0 := δ0I , δ0 = 0.7.

We obtain

γnom(δ0) = 1.20, min
δ∈δ

Lmo(δ) = Lmo(0.66) = 1.39 and γsep = 2.02.

• Minimizing Lmo leads as desired to better closed-loop H∞ performance if
compared to robust design.

• Safe operation is assured as robustly stabilizing controllers are designed.

• Here F is a subset of R4×8 which has dimension 36 and turns sampling or
gridding very tedious.

• The minimizer of Lmo is not necessarily equal to δ0.

[6] Leibfritz. COMPle ib: COnstraint Matrix-optimization Problem library - a collection of
test examples for nonlinear semidefinite programs, control system design and related
problems. 2004
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Observations

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5
(1+ )

mo

L
mo

nom

Interesting Bonus Feature:

• We can assure that δ0 is contained in [0.65, 0.9] as we have inequality

γnom(δ0) ≤ Lmo(δ0) ≤ (1 + ε)γmo(δ0).

• This allows to repeat the procedure for ∆ replaced by ∆̃ := [0.65, 0.9]I .

• This yields even better controllers as easier robust problems are involved:

γnom(δ0) = 1.20, min
δ∈[0.65,0.9]

Lmo(δ) = 1.31 and γsep = 1.66.
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“Negative” Example

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

1

2

3

4
(1+ )

mo

L
mo

nom

• Shrinking ∆ by a large amount is not always possible as the curves do
not have to intersect at all.

• But it can as well be possible to iteratively apply the shrinking.
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Interpolation/Approximation

Goal: Interpolate/Approximate Lmo with as few evaluations as possible.

• Evaluating Lmo requires (expensive?) closed-loop experiments.

• In principle any interpolation / approximation scheme can be used.

• As in [1], we propose a kernel based approach with customized kernels.

• Allows for an extension to the stochastic setting with Gaussian processes.
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Conclusions and Outlook

Conclusions:

• Evaluations of closed-loop experiments allow to design safe controllers
with superior performance if compared to a standard robust design.

• Systematic selection of suitable test controllers.

Outlooks:

• (Output-feedback) synthesis based on superior analysis results.

• How to handle time-varying uncertainties?

• Systematic approaches for higher dimensions.

15 / 15



Conclusions and Outlook

Conclusions:

• Evaluations of closed-loop experiments allow to design safe controllers
with superior performance if compared to a standard robust design.

• Systematic selection of suitable test controllers.

Outlooks:

• (Output-feedback) synthesis based on superior analysis results.

• How to handle time-varying uncertainties?

• Systematic approaches for higher dimensions.

15 / 15



Thank you!

Tobias Holicki

tobias.holicki@imng.uni-stuttgart.de

University of Stuttgart
Department of Mathematics
Mathematical Systems Theory
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