



## Controller Design via Experimental Exploration with Robustness Guarantees

**Tobias Holicki** 

### Introductory Comments

- This talk is highly inspired by the work [1].
- Related works are, e.g., [2], [3], [4], [5].
- The aim is to extend some of the aspects of [1] while focusing on a deterministic setup.

- [2] Ferizbegovic et al. "Learning Robust LQ-Controllers Using Application Oriented Exploration". 2020
- [3] Boczar, Matni, and Recht. "Finite-Data Performance Guarantees for the Output-Feedback Control of an Unknown System". 2018
- [4] Kober, Bagnell, and Peters. "Reinforcement learning in robotics: A survey". 2013

<sup>[1]</sup> Marco et al. "On the design of LQR kernels for efficient controller learning". 2017

<sup>[5]</sup> Berkenkamp and Schoellig. "Safe and robust learning control with Gaussian processes". 2015

#### Contents

Motivation and Problem Setting

Selection of Test Controllers

Conclusions and Outlook

#### Contents

#### Motivation and Problem Setting

Selection of Test Controllers

**Conclusions and Outlook** 

#### Setting and Goal

Let us consider the feedback interconnection

$$\begin{pmatrix} \dot{x}(t) \\ z(t) \\ e(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} A & B_1 & B_2 & B_3 \\ \hline C_1 & D_{11} & D_{12} & D_{13} \\ C_2 & D_{21} & D_{22} & D_{23} \\ I & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x(t) \\ w(t) \\ d(t) \\ u(t) \end{pmatrix}, \quad w(t) = \Delta_0 z(t)$$

for some uncertain parameter  $\Delta_0$  contained in a known compact set  $\Delta$ .

### Setting and Goal

Let us consider the feedback interconnection

$$\begin{pmatrix} \dot{x}(t) \\ z(t) \\ e(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} A & B_1 & B_2 & B_3 \\ \hline C_1 & D_{11} & D_{12} & D_{13} \\ C_2 & D_{21} & D_{22} & D_{23} \\ I & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x(t) \\ w(t) \\ d(t) \\ u(t) \end{pmatrix}, \quad w(t) = \Delta_0 z(t)$$

for some uncertain parameter  $\Delta_0$  contained in a known compact set  $\pmb{\Delta}.$ 

Goal: We wish to find a state-feedback controller

$$u(t) = F_* x(t)$$

which stabilizes  $\Delta_0 \star P$  and turns the closed-loop  $H_\infty$  norm is as small as possible.

I.e., we search for a minimizer of the function

$$J: F \mapsto \|\Delta_0 \star P \star F\|_{\infty}.$$

that stabilizes  $\Delta_0 \star P$ .



### Setting and Goal

Let us consider the feedback interconnection

$$\begin{pmatrix} \dot{x}(t) \\ z(t) \\ e(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} A & B_1 & B_2 & B_3 \\ \hline C_1 & D_{11} & D_{12} & D_{13} \\ C_2 & D_{21} & D_{22} & D_{23} \\ I & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x(t) \\ w(t) \\ d(t) \\ u(t) \end{pmatrix}, \quad w(t) = \Delta_0 z(t)$$

for some uncertain parameter  $\Delta_0$  contained in a known compact set  $\pmb{\Delta}.$ 

Goal: We wish to find a state-feedback controller

$$u(t) = F_* x(t)$$

which stabilizes  $\Delta_0 \star P$  and turns the closed-loop  $H_\infty$  norm is as small as possible.

I.e., we search for a minimizer of the function

$$J: F \mapsto \|\Delta_0 \star P \star F\|_{\infty}$$

that stabilizes  $\Delta_0 \star P$ .

**Issue:** Finding an (close-to-)optimal controller is difficult as  $\Delta_0$  is unknown.



### Standard Design Approaches

Via standard  $H_{\infty}$  design, we can compute for any fixed  $\Delta \in \mathbf{\Delta}$ :

$$\gamma_{\text{nom}}(\Delta) := \inf_{\substack{F \text{ stabilizes } \Delta \star P}} \|\Delta \star P \star F\|_{\infty}.$$

**Goal:** We wish to determine  $\gamma_{nom}(\Delta_0)$  and design a corresponding controller.

#### Standard Design Approaches

Via standard  $H_{\infty}$  design, we can compute for any fixed  $\Delta \in \mathbf{\Delta}$ :

$$\gamma_{\text{nom}}(\Delta) := \inf_{\substack{F \text{ stabilizes } \Delta \star P}} \|\Delta \star P \star F\|_{\infty}.$$

**Goal:** We wish to determine  $\gamma_{nom}(\Delta_0)$  and design a corresponding controller.

Via standard robust design (by exploiting knowledge of  $\Delta$ ), we can compute upper bounds  $\gamma_{sep}$  on the worst-case closed-loop  $H_{\infty}$  norm:

$$\inf_{F \in \mathbb{F}} \sup_{\Delta \in \mathbf{\Delta}} \| \Delta \star P \star F \|_{\infty} \leq \gamma_{\text{sep}}.$$

Here, we abbreviate the set of robustly stabilizing controllers as

 $\mathbb{F} := \{ F : F \text{ stabilizies } \Delta \star P \text{ for all } \Delta \in \mathbf{\Delta} \}.$ 

### Standard Design Approaches

Via standard  $H_{\infty}$  design, we can compute for any fixed  $\Delta \in \mathbf{\Delta}$ :

$$\gamma_{\text{nom}}(\Delta) := \inf_{\substack{F \text{ stabilizes } \Delta \star P}} \|\Delta \star P \star F\|_{\infty}.$$

**Goal:** We wish to determine  $\gamma_{nom}(\Delta_0)$  and design a corresponding controller.

Via standard robust design (by exploiting knowledge of  $\Delta$ ), we can compute upper bounds  $\gamma_{sep}$  on the worst-case closed-loop  $H_{\infty}$  norm:

$$\inf_{F\in\mathbb{F}} \sup_{\Delta\in\mathbf{\Delta}} \|\Delta\star P\star F\|_{\infty} \leq \gamma_{\mathrm{sep}}.$$

Here, we abbreviate the set of robustly stabilizing controllers as

$$\mathbb{F} := \{ F : F \text{ stabilizies } \Delta \star P \text{ for all } \Delta \in \mathbf{\Delta} \}.$$

Clearly, we have

$$\gamma_{\mathrm{nom}}(\Delta_0) \leq \gamma_{\mathrm{sep}}$$

and there might be a very large gap between both values.

### Setting and Goal (Continued)

**Additional Assumption:** E.g. by running and measuring multiple closed-loop experiments, the function

 $J: F \mapsto \|\Delta_0 \star P \star F\|_{\infty}$  can be evaluated for finitely many controllers  $F_1, \ldots, F_N$ .

**New Goal:** Based on this additional information, find a controller F such that  $J(F) = \|\Delta_0 \star P \star F\|_{\infty}$  is much closer to  $\gamma_{nom}(\Delta_0)$  than  $\gamma_{sep}$ .

### Setting and Goal (Continued)

**Additional Assumption:** E.g. by running and measuring multiple closed-loop experiments, the function

 $J: F \mapsto \|\Delta_0 \star P \star F\|_{\infty}$  can be evaluated for finitely many controllers  $F_1, \ldots, F_N$ .

**New Goal:** Based on this additional information, find a controller F such that  $J(F) = \|\Delta_0 \star P \star F\|_{\infty}$  is much closer to  $\gamma_{nom}(\Delta_0)$  than  $\gamma_{sep}$ .

The above assumption suggests to perform a numerical minimization of a function that interpolates the data points

 $(F_1, J(F_1)), \ldots, (F_N, J(F_N)).$ 

This gives rise to the following essential questions.

- How can suitable test controllers  $F_1, \ldots, F_N$  be selected systematically?
- How can the resulting data points be interpolated?



Motivation and Problem Setting

#### Selection of Test Controllers

**Conclusions and Outlook** 

### Robust Stability

**Issue:** Stability is a critical property as interconnecting a controller to the given system that is not stabilizing can lead to catastrophic results.

**Remedy:** Following [1], we only search for robustly stabilizing controllers in  $\mathbb{F}$ .

### Robust Stability

**Issue:** Stability is a critical property as interconnecting a controller to the given system that is not stabilizing can lead to catastrophic results.

**Remedy:** Following [1], we only search for robustly stabilizing controllers in  $\mathbb{F}$ .

It is not possible to include this safety requirement for free as we usually have

$$\gamma_{\text{nom}}(\Delta_0) = \inf_{F \text{ stabilizes } \Delta_0 \star P} J(F) < \inf_{F \in \mathbb{F}} J(F).$$

 We show later on how to get closer to γ<sub>nom</sub>(Δ<sub>0</sub>) by increasing the set of admissible controllers while still being able to guarantee safe operation.

<sup>[1]</sup> Marco et al. "On the design of LQR kernels for efficient controller learning". 2017

### Sampling and Gridding

**Issue:** It can be difficult to find controllers in  $\mathbb{F} \subset \mathbb{R}^{n_u \times n_y}$  based on gridding or sampling especially if

- the dimension of  $\mathbb{R}^{n_u \times n_y}$  is large,
- ullet  $\mathbb F$  is an unbounded set or
- $\mathbb{F}$  has measure zero in  $\mathbb{R}^{n_u \times n_y}$ .

**Remedy:** In contrast to [1], we propose a systematic approach to find such controllers based on gridding or sampling in the compact set  $\Delta$ .

As motivation, let us define the function (assuming it is well-defined)

$$\mathcal{F}: \mathbf{\Delta} o \mathbb{F}, \ \Delta \mapsto F \in \operatorname*{arg\,min}_{F \in \mathbb{F}} \|\Delta \star P \star F\|_{\infty}.$$

Then  $\mathcal{F}(\Delta)$  is a robustly stabilizing controller that yields the smallest  $H_{\infty}$  norm of  $\Delta \star P \star F$  among all robustly stabilizing controllers.

As motivation, let us define the function (assuming it is well-defined)

$$\mathcal{F}: \mathbf{\Delta} \to \mathbb{F}, \ \Delta \mapsto F \in \argmin_{F \in \mathbb{F}} \| \Delta \star P \star F \|_{\infty}.$$

Then  $\mathcal{F}(\Delta)$  is a robustly stabilizing controller that yields the smallest  $H_{\infty}$  norm of  $\Delta \star P \star F$  among all robustly stabilizing controllers.

By its definition we have

 $\|\Delta\star P\star \mathcal{F}(\Delta)\|_\infty \leq \|\Delta\star P\star F\|_\infty \quad \text{for all} \quad F\in\mathbb{F} \quad \text{and all} \quad \Delta\in \pmb{\Delta}.$ 

As motivation, let us define the function (assuming it is well-defined)

$$\mathcal{F}: \mathbf{\Delta} \to \mathbb{F}, \ \Delta \mapsto F \in \argmin_{F \in \mathbb{F}} \| \Delta \star P \star F \|_{\infty}.$$

Then  $\mathcal{F}(\Delta)$  is a robustly stabilizing controller that yields the smallest  $H_{\infty}$  norm of  $\Delta \star P \star F$  among all robustly stabilizing controllers.

By its definition we have

 $\|\Delta \star P \star \mathcal{F}(\Delta)\|_{\infty} \leq \|\Delta \star P \star F\|_{\infty} \quad \text{for all} \quad F \in \mathbb{F} \quad \text{and all} \quad \Delta \in \mathbf{\Delta}.$ 

For  $L := J \circ \mathcal{F} : \Delta \mapsto \|\Delta_0 \star \mathcal{P} \star \mathcal{F}(\Delta)\|_{\infty}$  this implies

 $\inf_{F\in\mathbb{F}}J(F)=\inf_{F\in\mathbb{F}}\|\Delta_0\star P\star F\|_{\infty}=L(\Delta_0)\leq L(\Delta)\quad\text{ for all }\quad\Delta\in {\bf \Delta}.$ 

As motivation, let us define the function (assuming it is well-defined)

$$\mathcal{F}: \mathbf{\Delta} \to \mathbb{F}, \ \Delta \mapsto F \in \argmin_{F \in \mathbb{F}} \| \Delta \star P \star F \|_{\infty}.$$

Then  $\mathcal{F}(\Delta)$  is a robustly stabilizing controller that yields the smallest  $H_{\infty}$  norm of  $\Delta \star P \star F$  among all robustly stabilizing controllers.

By its definition we have

 $\|\Delta\star P\star \mathcal{F}(\Delta)\|_{\infty}\leq \|\Delta\star P\star F\|_{\infty}\quad\text{for all}\quad F\in\mathbb{F}\quad\text{and all}\quad\Delta\in \pmb{\Delta}.$ 

For  $L := J \circ \mathcal{F} : \Delta \mapsto \|\Delta_0 \star P \star \mathcal{F}(\Delta)\|_{\infty}$  this implies

 $\inf_{F\in\mathbb{F}}J(F)=\inf_{F\in\mathbb{F}}\|\Delta_0\star P\star F\|_{\infty}=L(\Delta_0)\leq L(\Delta)\quad\text{ for all }\quad\Delta\in {\bf \Delta}.$ 

Why useful? We can minimize  $L : \Delta \to \mathbb{R}$  instead of  $J : \mathbb{F} \to \mathbb{R}$  based on I/O samples.

**Observation:** A successful minimization of *L* would even allow to identify the uncertain parameter  $\Delta_0$  if the minimizer is unique.

**Observation:** A successful minimization of *L* would even allow to identify the uncertain parameter  $\Delta_0$  if the minimizer is unique.

**Issue:** It is not easily possible to compute  $\mathcal{F}(\Delta)$  or  $\inf_{F \in \mathbb{F}} \|\Delta \star P \star F\|_{\infty}$  for any fixed  $\Delta \in \Delta$  as we are facing a robust multi-objective problem.

• The underlying problem is nonconvex and also nonsmooth in general.

**Observation:** A successful minimization of *L* would even allow to identify the uncertain parameter  $\Delta_0$  if the minimizer is unique.

**Issue:** It is not easily possible to compute  $\mathcal{F}(\Delta)$  or  $\inf_{F \in \mathbb{F}} \|\Delta \star P \star F\|_{\infty}$  for any fixed  $\Delta \in \Delta$  as we are facing a robust multi-objective problem.

• The underlying problem is nonconvex and also nonsmooth in general.

**However**, as for robust controller design we can compute upper bounds on the optimal value and synthesize corresponding controllers!

#### Robust Multi-Objective Design

**Lemma 1.** Let  $\Delta \in \Delta$  be fixed. Then there is a controller  $F \in \mathbb{F}$  satisfying  $\|\Delta \star P \star F\|_{\infty} < \gamma$  if there exist a matrix M and symmetric Y, P satisfying

$$\mathbf{Y} \succ \mathbf{0},$$

$$\mathbf{P} \in \mathbb{P}(\mathbf{\Delta}), \quad (\mathbf{\bullet})^{T} \begin{pmatrix} 0 & I \\ I & 0 \\ \hline I & 0 \end{pmatrix} \begin{pmatrix} I & 0 \\ -(A\mathbf{Y} + B_{3}\mathbf{M})^{T} - (C_{1}\mathbf{Y} + D_{13}\mathbf{M})^{T} \\ 0 & I \\ -B_{1}^{T} & -D_{11}^{T} \end{pmatrix} \succ 0, \quad (RS)$$
$$(\mathbf{\bullet})^{T} \begin{pmatrix} 0 & I \\ I & 0 \\ \hline I & 0 \\ \hline I & 0 \\ \hline I & 0 \\ -(A^{\Delta}\mathbf{Y} + B_{3}^{\Delta}\mathbf{M})^{T} - (C_{2}^{\Delta}\mathbf{Y} + D_{23}^{\Delta}\mathbf{M})^{T} \\ 0 & I \\ -(B_{2}^{\Delta})^{T} & -(D_{22}^{\Delta})^{T} \end{pmatrix} \succ 0. \quad (NP\Delta)$$

If the above LMIs are feasible, a suitable controller is  $F := MY^{-1}$ . Moreover,

$$\inf_{F\in\mathbb{F}} \|\Delta \star P \star F\|_{\infty} \leq \gamma_{\mathrm{mo}}(\Delta)$$

for  $\gamma_{\rm mo}(\Delta)$  being the infimal  $\gamma$  such that the above LMIs are feasible.

Instead of using  ${\cal F}$  and for  ${\varepsilon}>$  0, Lemma 1 suggests to employ the function

 $\mathcal{F}_{\mathrm{mo}}: \Delta \mapsto \text{ a corresp. close-to-optimal controller } (\gamma = (1 + \varepsilon) \gamma_{\mathrm{mo}}(\Delta))$ 

- $\mathcal{F}_{\mathrm{mo}}(\Delta)$  is easily determined by solving a convex semi-definite program.
- Optimal controllers might be bad conditioned or do not even exist.

Instead of using  ${\cal F}$  and for  ${\varepsilon}>$  0, Lemma 1 suggests to employ the function

 $\mathcal{F}_{\mathrm{mo}}: \Delta \mapsto \text{ a corresp. close-to-optimal controller } (\gamma = (1 + \varepsilon) \gamma_{\mathrm{mo}}(\Delta))$ 

- $\mathcal{F}_{\mathrm{mo}}(\Delta)$  is easily determined by solving a convex semi-definite program.
- Optimal controllers might be bad conditioned or do not even exist.

Finally, we obtain suitable test controllers by choosing

 ${\pmb F}_1:={\mathcal F}_{\rm mo}(\Delta_1),\ldots,{\pmb F}_N:={\mathcal F}_{\rm mo}(\Delta_N) \ \, \text{for samples} \ \, \Delta_1,\ldots,\Delta_N\in{\pmb \Delta}.$ 

Instead of using  ${\cal F}$  and for  ${\varepsilon}>$  0, Lemma 1 suggests to employ the function

 $\mathcal{F}_{\mathrm{mo}}: \Delta \mapsto \text{ a corresp. close-to-optimal controller } (\gamma = (1 + \varepsilon) \gamma_{\mathrm{mo}}(\Delta))$ 

- $\mathcal{F}_{\mathrm{mo}}(\Delta)$  is easily determined by solving a convex semi-definite program.
- Optimal controllers might be bad conditioned or do not even exist.

Finally, we obtain suitable test controllers by choosing

$${\sf F}_1:={\cal F}_{\rm mo}(\Delta_1),\ldots,{\sf F}_N:={\cal F}_{\rm mo}(\Delta_N) \ \, {\rm for \ samples} \ \, \Delta_1,\ldots,\Delta_N\in{\bf \Delta}.$$

• For  $L_{\mathrm{mo}} := J \circ \mathcal{F}_{\mathrm{mo}}, \ \Delta \mapsto \|\Delta_0 \star P \star \mathcal{F}_{\mathrm{mo}}(\Delta)\|_{\infty}$  we have

 $\gamma_{\mathrm{nom}}(\Delta_0) \leq L(\Delta_0) \leq L_{\mathrm{mo}}(\Delta_0) \leq (1 + \varepsilon) \gamma_{\mathrm{mo}}(\Delta_0)$ 

Instead of using  ${\cal F}$  and for  ${\varepsilon}>$  0, Lemma 1 suggests to employ the function

 $\mathcal{F}_{\mathrm{mo}}: \Delta \mapsto \text{ a corresp. close-to-optimal controller } (\gamma = (1 + \varepsilon) \gamma_{\mathrm{mo}}(\Delta))$ 

- $\mathcal{F}_{\mathrm{mo}}(\Delta)$  is easily determined by solving a convex semi-definite program.
- Optimal controllers might be bad conditioned or do not even exist.

Finally, we obtain suitable test controllers by choosing

$${\sf F}_1:={\cal F}_{\rm mo}(\Delta_1),\ldots,{\sf F}_N:={\cal F}_{\rm mo}(\Delta_N) \ \, {\rm for \ samples} \ \, \Delta_1,\ldots,\Delta_N\in{\bf \Delta}.$$

• For  $L_{\mathrm{mo}} := J \circ \mathcal{F}_{\mathrm{mo}}, \ \Delta \mapsto \|\Delta_0 \star P \star \mathcal{F}_{\mathrm{mo}}(\Delta)\|_{\infty}$  we have

$$\gamma_{\mathrm{nom}}(\Delta_0) \leq L(\Delta_0) \leq L_{\mathrm{mo}}(\Delta_0) \leq (1+\varepsilon)\gamma_{\mathrm{mo}}(\Delta_0)$$

- A minimizer of L is not necessarily a minimizer of L<sub>mo</sub> and, conversely, a minimizer of L<sub>mo</sub> is not necessarily a minimizer of L.
  - This is due to the conservatism in the convex design.

#### Example

Let us consider a slight variation of an example from COMPIeib [6] with

$$\boldsymbol{\Delta} := \boldsymbol{\delta} \boldsymbol{I}, \quad \boldsymbol{\delta} := [-1, 1], \quad \boldsymbol{\Delta}_0 := \delta_0 \boldsymbol{I}, \quad \delta_0 = 0.7.$$

We obtain

$$\gamma_{\mathrm{nom}}(\delta_0) = 1.20, \quad \min_{\delta \in \boldsymbol{\delta}} \mathcal{L}_{\mathrm{mo}}(\delta) = \mathcal{L}_{\mathrm{mo}}(0.66) = 1.39 \quad \text{and} \quad \gamma_{\mathrm{sep}} = 2.02.$$

<sup>[6]</sup> Leibfritz. COMPl<sub>e</sub>ib: COnstraint Matrix-optimization Problem library - a collection of test examples for nonlinear semidefinite programs, control system design and related problems. 2004

#### Example

Let us consider a slight variation of an example from  $\mathsf{COMPl}_e\mathsf{ib}$  [6] with

$$\boldsymbol{\Delta} := \boldsymbol{\delta} \boldsymbol{I}, \quad \boldsymbol{\delta} := [-1, 1], \quad \boldsymbol{\Delta}_0 := \delta_0 \boldsymbol{I}, \quad \delta_0 = 0.7.$$

We obtain

$$\gamma_{\mathrm{nom}}(\delta_0) = 1.20, \quad \min_{\delta \in \boldsymbol{\delta}} \mathcal{L}_{\mathrm{mo}}(\delta) = \mathcal{L}_{\mathrm{mo}}(0.66) = 1.39 \quad \text{and} \quad \gamma_{\mathrm{sep}} = 2.02.$$

- Minimizing  $L_{\rm mo}$  leads as desired to better closed-loop  $H_{\infty}$  performance if compared to robust design.
- Safe operation is assured as robustly stabilizing controllers are designed.
- Here  $\mathbb F$  is a subset of  $\mathbb R^{4\times 8}$  which has dimension 36 and turns sampling or gridding very tedious.
- The minimizer of  $L_{\rm mo}$  is not necessarily equal to  $\delta_0$ .

<sup>[6]</sup> Leibfritz. COMPleib: COnstraint Matrix-optimization Problem library - a collection of test examples for nonlinear semidefinite programs, control system design and related problems. 2004



#### **Interesting Bonus Feature:**

• We can assure that  $\delta_0$  is contained in [0.65, 0.9] as we have inequality

$$\gamma_{\mathrm{nom}}(\delta_0) \leq \mathcal{L}_{\mathrm{mo}}(\delta_0) \leq (1+\varepsilon)\gamma_{\mathrm{mo}}(\delta_0).$$



#### **Interesting Bonus Feature:**

• We can assure that  $\delta_0$  is contained in [0.65, 0.9] as we have inequality

$$\gamma_{\mathrm{nom}}(\delta_0) \leq \mathcal{L}_{\mathrm{mo}}(\delta_0) \leq (1+\varepsilon)\gamma_{\mathrm{mo}}(\delta_0).$$

- This allows to repeat the procedure for  $\Delta$  replaced by  $\tilde{\Delta} := [0.65, 0.9]/.$
- This yields even better controllers as easier robust problems are involved:

$$\gamma_{
m nom}(\delta_0) = 1.20, \quad \min_{\delta \in [0.65, 0.9]} L_{
m mo}(\delta) = 1.31 \ \ {
m and} \ \ \gamma_{
m sep} = 1.66.$$

#### "Negative" Example



- Shrinking Δ by a large amount is not always possible as the curves do not have to intersect at all.
- But it can as well be possible to iteratively apply the shrinking.

**Goal:** Interpolate/Approximate  $L_{\rm mo}$  with as few evaluations as possible.

• Evaluating  $L_{\rm mo}$  requires (expensive?) closed-loop experiments.

**Goal:** Interpolate/Approximate  $L_{\rm mo}$  with as few evaluations as possible.

- Evaluating  $L_{\rm mo}$  requires (expensive?) closed-loop experiments.
- In principle any interpolation / approximation scheme can be used.

**Goal:** Interpolate/Approximate  $L_{\rm mo}$  with as few evaluations as possible.

- Evaluating  $L_{\rm mo}$  requires (expensive?) closed-loop experiments.
- In principle any interpolation / approximation scheme can be used.
- As in [1], we propose a kernel based approach with customized kernels.
- Allows for an extension to the stochastic setting with Gaussian processes.

**Goal:** Interpolate/Approximate  $L_{\rm mo}$  with as few evaluations as possible.

- Evaluating  $L_{\rm mo}$  requires (expensive?) closed-loop experiments.
- In principle any interpolation / approximation scheme can be used.
- As in [1], we propose a kernel based approach with customized kernels.
- Allows for an extension to the stochastic setting with Gaussian processes.





Motivation and Problem Setting

Selection of Test Controllers

Conclusions and Outlook

### Conclusions and Outlook

#### **Conclusions:**

- Evaluations of closed-loop experiments allow to design safe controllers with superior performance if compared to a standard robust design.
- Systematic selection of suitable test controllers.

### Conclusions and Outlook

#### **Conclusions:**

- Evaluations of closed-loop experiments allow to design safe controllers with superior performance if compared to a standard robust design.
- Systematic selection of suitable test controllers.

#### **Outlooks:**

- (Output-feedback) synthesis based on superior analysis results.
- How to handle time-varying uncertainties?
- Systematic approaches for higher dimensions.



# Thank you!

#### **Tobias Holicki**

tobias.holicki@imng.uni-stuttgart.de

University of Stuttgart Department of Mathematics Mathematical Systems Theory