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Static Output-Feedback H∞ Design

Let us consider a systemẋ(t)
e(t)
y(t)

 =

A B B2

C D D12

C2 D21 0

x(t)
d(t)
u(t)

 .

Goal: Design a static output-feedback controller

u(t) = Ky(t)

P

K

y u

de

such that the resulting closed-loop H∞ norm is as small as possible.
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Goal: Design a static output-feedback controller

u(t) = Ky(t)

P

K

y u

de

such that the resulting closed-loop H∞ norm is as small as possible.

Issue: Computing the optimal H∞ norm and finding K is a hard nonconvex
and also nonsmooth problem

Remedy: Heuristic approaches such as

• D-K iteration

• hinfstruct [1]

• Dual iteration [2]

[1] Apkarian and Noll. “Nonsmooth H∞ Synthesis”. 2006
[2] Iwasaki. “The dual iteration for fixed-order control”. 1999 1 / 16



Elimination Lemma [3]

Lemma 1. Let P ∈ Sp+q with in(P) = (0, p, q) and U, V , W be given.
Then there is a matrix Z satisfying(

Ip
UTZV + W

)T

P

(
Ip

UTZV + W

)
≺ 0

if and only if

V T
⊥

(
Ip
W

)T

P

(
Ip
W

)
V⊥ ≺ 0 and UT

⊥

(
−W T

Iq

)T

P−1

(
−W T

Iq

)
U⊥ � 0.

Notation: M⊥ is a basis matrix of the kernel of M.

Special Case: If P =
(
Q I
I 0

)
and W = 0 the LMIs, respectively, read as

Q + UTZV + (UTZV )T ≺ 0, V T
⊥QV⊥ ≺ 0 and UT

⊥QU⊥ ≺ 0.

[3] Helmersson. “IQC synthesis based on inertia constraints”. 1999
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Static Output-Feedback

Theorem 2. Let Pγ :=
(

I 0
0 −γ2I

)
, V := (C2,D21)⊥ and U = (BT

2 ,D
T
12)⊥.

Then there is a SOF controller K satisfying ‖P ? K‖∞ < γ if and only if there
exists a matrix X satisfying

(•)T
 0 X
X 0

Pγ




I 0
A B
C D
0 I

V ≺ 0, (•)T
 0 X−1

X−1 0
P−1
γ




I 0
−AT −CT

0 I
−BT −DT

U� 0

and
X � 0.

Moreover, we have
inf

K stabilizes P
‖P ? K‖∞ = γopt

for γopt being the infimal γ such that the above LMIs are feasible.
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Full-Order Dynamic Output-Feedback

Theorem 3. Let Pγ :=
(

I 0
0 −γ2I

)
, V := (C2,D21)⊥ and U = (BT

2 ,D
T
12)⊥.

Then there is a full-order controller Kdof satisfying ‖P ? Kdof‖∞ < γ if and
only if there exist matrices X and Y satisfying

(•)T
 0 X
X 0

Pγ




I 0
A B
C D
0 I

V ≺ 0, (•)T
 0 Y
Y 0

P−1
γ




I 0
−AT −CT

0 I
−BT −DT

U � 0

and (
X I
I Y

)
� 0.

Moreover, we have
γdof ≤ γopt

for γdof being the infimal γ such that the above LMIs are feasible.
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Full-Information Controller Design

For a full-information (FI) controller

u = F ỹ = (F 1,F 2)ỹ where ỹ :=

(
x
d

)
the resulting closed-loop system reads as(

ẋ(t)
e(t)

)
=

(
A(F ) B(F )
C (F ) D(F )

)(
x(t)
d(t)

)
=

(
A + B2F 1 B + B2F 2

C+D12F 1 D+D12F 2

)(
x(t)
d(t)

)
. (1)

Lemma 4. There is a FI controller F such that ‖(1)‖∞ < γ if and only if
there exists a matrix Y � 0 satisfying

(•)T
 0 Y
Y 0

P−1
γ




I 0
−AT −CT

0 I
−BT −DT

U � 0.
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First Key Result

Once we have designed a suitable FI F , we can synthesize a SOF controller:

Theorem 5. There is a SOF controller K satisfying ‖P ? K‖∞ < γ if there
exists a matrix X � 0 satisfying

(•)T
 0 X
X 0

Pγ




I 0
A B
C D
0 I

V ≺ 0 and (•)T
 0 X
X 0

Pγ




I 0
A(F ) B(F )
C (F ) D(F )

0 I

 ≺ 0.

Moreover, we have
γdof ≤ γopt ≤ γF

for γF being the infimal γ such that the above LMIs are feasible.

Applying elimination lemma to eliminate F from second LMI leads to:

(•)T
 0 X−1

X−1 0
P−1
γ




I 0
−AT −CT

0 I
−BT −DT

U � 0.
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Dual Design Problems
Full-actuation (FA) design:(

ẋ(t)
e(t)

)
=

(
A(E ) B(E )
C (E ) D(E )

)(
x(t)
d(t)

)
=

(
A + E 1C2 B + E 1D21

C + E 2C2 D + E 2D21

)(
x(t)
d(t)

)
. (2)

Lemma 6. There is a FA gain E s.th. ‖(2)‖∞<γ iff there is a matrix X � 0
with

(•)T
(

0 X
X 0

Pγ

)( I 0
A B
C D
0 I

)
V ≺ 0.

Theorem 7. There is a SOF controller K satisfying ‖P ? K‖∞ < γ if there
exists a matrix Y � 0 satisfying

(•)T
 0 Y
Y 0

P−1
γ




I 0
−A(E )T −C (E )T

0 I
−B(E )T −D(E )T

�0 & (•)T
 0 Y
Y 0

P−1
γ




I 0
−AT −CT

0 I
−BT −DT

U�0.

Moreover, we have
γdof ≤ γopt ≤ γE

for γE being the infimal γ such that the above LMIs are feasible.
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Dual Iteration Algorithm

1. Compute the lower bound γdof and set k = 1.

2. Design an initial FI gain F .

3. Primal Step: Compute γF based on Theorem 5 and set γk := γF .

4. Design a corresponding FA gain E .

5. Dual Step: Compute γE based on Theorem 7 and set γk+1 := γE .

6. If k is too large or γk does not decrease anymore stop and apply
Theorem 7 to construct a close-to-optimal SOF controller K .

Else set k = k + 2, design a corresponding FI gain F and go to Step 3.

• Key: Exploiting the elimination lemma.

• Algebraically, the steps are very intuitive.

• Control theoretic interpretation?
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Modifying the Original System Interconnection

Suppose we have designed a FI controller ũ = F ỹ . Then we can incorporate it
into the original interconnection with a parameter δ ∈ [0, 1] as follows:

P

K

F

δ + 1− δ

y

de

ỹ û

u

ũ

Note that
u = δû + (1− δ)ũ.

One can view δ as a homotopy parameter
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Key observation: Finding a robust SOF controller K can be turned into a
convex problem!

Why? The corresponding generalized plant resembles the one appearing in
robust estimation problems.

Issue: Computed gain bounds are conservative. We solve a convex but more
difficult design problem since an uncertain parameter is involved.
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Modifying the Original System Interconnection (2)

Remedy: We allow the controller to additionally include measurements of

u = δû + (1− δ)ũ

• Since the controller K̂ knows its output û this is essentially as good as
measuring the new uncertain signal w̃ = δz̃ = δ(û − ũ).

• The important structure is preserved!

P

K̂

F

δ + 1− δ

y

de

ỹ û

u

ũ
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Main Results

Lemma 8. The OL system corresponding to the last diagram is given by


ẋ(t)
e(t)
z̃(t)
ŷ(t)

 =


A + B2F 1 B + B2F 2 B2 0
C + D12F 1 D + D12F 2 D12 0
−F 1 −F 2 0 I
C2 D21 0 0
F 1 F 2 I 0



x(t)
d(t)
w̃(t)
û(t)


with z̃ := û − ũ, w̃ := δz̃ as well as ŷ := ( y

u )

• We can derive convex LMI criteria for designing K̂ = (K̂1, K̂2), e.g., via
elimination.

• We obtain a desired SOF controller via K := (I − K̂2)−1K̂1.

• Furthermore, as annihilator for
(
C2 D21 0
F 1 F 2 I

)
we can choose

(
I 0
0 I
−F 1 −F 2

)
V

with V = (C2,D21)⊥ as before.(
A+B2F 1 B+B2F 2 B2

C+D12F 1 D+D12F 2 D12

−F 1 −F 2 0

)(
I 0
0 I
−F 1 −F 2

)
V =

(
A B
C D
−F 1 −F 2

)
V .
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with z̃ := û − ũ, w̃ := δz̃ as well as ŷ := ( y
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Main Results

Theorem 9. There is a SOF controller K̂ such that the H∞ norm of the last
interconnection is smaller than γ for all δ ∈ [0, 1] if there exists a symmetric
matrix X � 0 satisfying

(•)T
 0 X
X 0

Pγ




I 0
A B
C D
0 I

V ≺ 0 and (•)T
 0 X
X 0

Pγ




I 0
A(F ) B(F )
C (F ) D(F )

0 I

 ≺ 0.

• These are exactly the same conditions as earlier!

• Thus we recovered the primal step in the dual iteration.
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Remarks

• The second component of the dual iteration (the dual step) is related in a
similar fashion to a problem that resembles robust feedforward design.

• It might be possible to obtain improved upper bounds, e.g., by

• viewing δ as a scheduling parameter,

• using dynamic IQCs for δ ∈ [0, 1] or

• using parameter-dependent Lyapunov functions.

However, we only obtained marginal improvements that do not justify the
increased complexity.

• Main Point: K̂ can also be designed based on parameter transformation.

This allows to extend the scheme to situations were elimination is not
possible, e.g.,

• H2 Performance

• Closed-loop poles in LMI region

• Multi-objective design

• . . .
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Comparison to a hinfstruct via Examples from [5]

Example γdof γ1 γ5 γ9 γhis
AC3 2.97 4.50 3.70 3.63 3.64
AC4 0.56 1.29 1.05 1.02 0.96

AC18 5.40 15.98 10.76 10.71 10.70
HE4 22.84 32.29 23.94 22.84 23.80
DIS1 4.16 4.85 4.34 4.34 4.19

WEC2 3.60 6.05 4.42 4.32 4.25
BDT1 0.27 0.30 0.27 0.27 0.27
EB2 1.77 2.03 2.02 2.02 2.02

NN14 9.44 23.51 17.48 17.48 17.48

Example γdof γ1 γ5 γ9 γhis
PAS 0.05 3.48 0.41 0.08 -
TF3 0.25 3.63 0.52 0.40 -

NN17 2.64 - - - 11.22

[5] Leibfritz. COMPle ib: COnstraint Matrix-optimization Problem library - a collection of
test examples for nonlinear semidefinite programs, control system design and related
problems. 2004
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Comparison to a D-K iteration for Generalized H2

Design

Name γdof γ1 γ3 γ9 γ9
dk γ21

dk

AC6 1.91 2.05 1.99 1.98 2.07 2.07
AC9 1.39 1.74 1.41 1.40 8.34 5.20

AC11 1.56 1.96 1.83 1.79 1.85 1.85
HE1 0.08 0.14 0.11 0.09 0.09 0.09
HE5 0.82 12.54 1.56 1.15 3.76 3.67

REA2 0.90 0.93 0.91 0.90 0.92 0.92
AGS 4.45 4.75 4.67 4.67 4.68 4.68

WEC2 3.71 19.56 5.73 4.95 14.71 14.70
NN14 20.90 48.11 32.99 23.00 28.94 28.91

15 / 16



Contents

Motivation

Dual Iteration

Interpretation

Examples

Conclusions



Conclusions and Outlook

Conclusions:

• The dual iteration is an interesting heuristic scheme for solving nonconvex
design problems.

• The individual steps can be viewed as convex robust design problems with
homotopy parameter δ and with estimation / feedforward structure.

Outlook:

• Robust design based on dynamic IQC analysis results

• Robust/static design for hybrid systems

• Consensus for heterogeneous multi-agent systems
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Thank you!

Tobias Holicki

tobias.holicki@imng.uni-stuttgart.de

University of Stuttgart
Department of Mathematics
Mathematical Systems Theory
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