University of Stuttgart
Germany

Revisiting the Dual Iteration

Tobias Holicki

Contents

Motivation

Dual Iteration

Interpretation

Examples

Conclusions

Contents

Motivation

Dual Iteration

Interpretation

Examples

Conclusions

Static Output-Feedback H_{∞} Design

Let us consider a system

$$
\left(\begin{array}{c}
\dot{\dot{x}(t)} \\
\hline e(t) \\
y(t)
\end{array}\right)=\left(\begin{array}{c|cc}
A & B & B_{2} \\
\hline C & D & D_{12} \\
C_{2} & D_{21} & 0
\end{array}\right)\left(\begin{array}{c}
x(t) \\
d(t) \\
u(t)
\end{array}\right)
$$

Goal: Design a static output-feedback controller

$$
u(t)=K y(t)
$$

such that the resulting closed-loop H_{∞} norm is as small as possible.

Static Output-Feedback H_{∞} Design

Let us consider a system

$$
\binom{\frac{\dot{x}(t)}{e(t)}}{y(t)}=\left(\begin{array}{c|cc}
A & B & B_{2} \\
\hline C & D & D_{12} \\
C_{2} & D_{21} & 0
\end{array}\right)\left(\begin{array}{c}
x(t) \\
\hline d(t) \\
u(t)
\end{array}\right) .
$$

Goal: Design a static output-feedback controller

$$
u(t)=K y(t)
$$

such that the resulting closed-loop H_{∞} norm is as small as possible.

Issue: Computing the optimal H_{∞} norm and finding K is a hard nonconvex and also nonsmooth problem
Remedy: Heuristic approaches such as

- D-K iteration
- hinfstruct [1]
- Dual iteration [2]
[1] Apkarian and Noll. "Nonsmooth H_{∞} Synthesis". 2006
[2] Iwasaki. "The dual iteration for fixed-order control". 1999

Elimination Lemma [3]

Lemma 1. Let $P \in \mathbb{S}^{p+q}$ with $\operatorname{in}(P)=(0, p, q)$ and U, V, W be given. Then there is a matrix Z satisfying

$$
\left(\begin{array}{c}
\stackrel{I_{p}}{U^{T}} Z V V^{T}+W
\end{array}\right)^{I_{p}} P\left(U^{T} Z V+W\right) \prec 0
$$

if and only if

$$
V_{\perp}^{T}\binom{I_{p}}{W}^{T} P\binom{I_{p}}{W} V_{\perp} \prec 0 \quad \text { and } \quad U_{\perp}^{T}\binom{-W^{T}}{I_{q}}^{T} P^{-1}\binom{-W^{T}}{I_{q}} U_{\perp} \succ 0 .
$$

Notation: M_{\perp} is a basis matrix of the kernel of M.
Special Case: If $P=\left(\begin{array}{ll}Q & 1 \\ 1 & 0\end{array}\right)$ and $W=0$ the LMIs, respectively, read as

$$
Q+U^{T} Z V+\left(U^{T} Z V\right)^{T} \prec 0, \quad V_{\perp}^{T} Q V_{\perp} \prec 0 \quad \text { and } \quad U_{\perp}^{T} Q U_{\perp} \prec 0 .
$$

[3] Helmersson. "IQC synthesis based on inertia constraints". 1999

Contents

Motivation

Dual Iteration

Interpretation

Examples

Conclusions

Static Output-Feedback

Theorem 2. Let $P_{\gamma}:=\left(\begin{array}{cc}1 & 0 \\ 0 & -\gamma^{2},\end{array}\right), V:=\left(C_{2}, D_{21}\right)_{\perp}$ and $U=\left(B_{2}^{T}, D_{12}^{T}\right)_{\perp}$. Then there is a SOF controller K satisfying $\|P \star K\|_{\infty}<\gamma$ if and only if there exists a matrix X satisfying
$(\bullet)^{T}\left(\begin{array}{ll|l}0 & X & \\ X & 0 & \\ \hline & P_{\gamma}\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ A & B \\ \hline C & D \\ 0 & I\end{array}\right) V \prec 0, \quad(\bullet)^{T}\left(\begin{array}{ccc}0 & X^{-1} \\ X^{-1} & 0 & \\ \hline & & P_{\gamma}^{-1}\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ -A^{T} & -C^{T} \\ \hline 0 & I \\ -B^{T} & -D^{T}\end{array}\right) U \succ 0$ and

$$
x \succ 0 .
$$

Moreover, we have

$$
\inf _{K \text { stabilizes } P}\|P \star K\|_{\infty}=\gamma_{\text {opt }}
$$

for $\gamma_{\text {opt }}$ being the infimal γ such that the above LMIs are feasible.

Full-Order Dynamic Output-Feedback

Theorem 3. Let $P_{\gamma}:=\left(\begin{array}{cc}1 & 0 \\ 0 & -\gamma^{2},\end{array}\right), V:=\left(C_{2}, D_{21}\right)_{\perp}$ and $U=\left(B_{2}^{T}, D_{12}^{T}\right)_{\perp}$. Then there is a full-order controller $K_{\text {dof }}$ satisfying $\left\|P \star K_{\text {dof }}\right\|_{\infty}<\gamma$ if and only if there exist matrices X and Y satisfying
and

$$
\left(\begin{array}{ll}
X & I \\
I & Y
\end{array}\right) \succ 0 .
$$

Moreover, we have

$$
\gamma_{\mathrm{dof}} \leq \gamma_{\mathrm{opt}}
$$

for $\gamma_{\text {dof }}$ being the infimal γ such that the above LMIs are feasible.

Full-Information Controller Design

For a full-information (FI) controller

$$
u=F \tilde{y}=\left(F_{1}, F_{2}\right) \tilde{y} \quad \text { where } \quad \tilde{y}:=\binom{x}{d}
$$

the resulting closed-loop system reads as

$$
\binom{\dot{x}(t)}{e(t)}=\left(\begin{array}{ll}
A(F) & B(F) \tag{1}\\
C(F) & D(F)
\end{array}\right)\binom{x(t)}{d(t)}=\left(\begin{array}{ll}
A+B_{2} F_{1} & B+B_{2} F_{2} \\
C+D_{12} F_{1} & D+D_{12} F_{2}
\end{array}\right)\binom{x(t)}{d(t)} .
$$

Lemma 4. There is a FI controller F such that $\|(1)\|_{\infty}<\gamma$ if and only if there exists a matrix $Y \succ 0$ satisfying

$$
(\bullet)^{T}\left(\begin{array}{cc|c}
0 & Y & \\
Y & 0 & \\
\hline & & P_{\gamma}^{-1}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-A^{T} & -C^{T} \\
\hline 0 & 1 \\
-B^{T} & -D^{T}
\end{array}\right) U \succ 0 .
$$

First Key Result

Once we have designed a suitable FI F, we can synthesize a SOF controller:
Theorem 5. There is a SOF controller K satisfying $\|P \star K\|_{\infty}<\gamma$ if there exists a matrix $X \succ 0$ satisfying
$(\bullet)^{T}\left(\begin{array}{ll|}0 & X \\ X & 0 \\ \hline & \\ \hline P_{\gamma}\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ A & B \\ \hline C & D \\ 0 & 1\end{array}\right) V \prec 0$ and $(\bullet)^{T}\left(\begin{array}{cc|}0 & X \\ X & 0 \\ \hline & \\ \hline\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ P_{\gamma}\end{array}\right)\left(\begin{array}{cc}A(F) & B(F) \\ \hline C(F) & D(F) \\ 0 & 1\end{array}\right) \prec 0$.
Moreover, we have

$$
\gamma_{\mathrm{dof}} \leq \gamma_{\mathrm{opt}} \leq \gamma_{\mathrm{F}}
$$

for γ_{F} being the infimal γ such that the above LMIs are feasible.

First Key Result

Once we have designed a suitable FI F, we can synthesize a SOF controller:
Theorem 5. There is a SOF controller K satisfying $\|P \star K\|_{\infty}<\gamma$ if there exists a matrix $X \succ 0$ satisfying
$(\bullet)^{T}\left(\begin{array}{ll|}0 & X \\ X & 0 \\ \hline & \\ \hline P_{\gamma}\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ A & B \\ \hline C & D \\ 0 & 1\end{array}\right) V \prec 0$ and $(\bullet)^{T}\left(\begin{array}{cc|}0 & X \\ X & 0 \\ \hline & \\ \hline\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ P_{\gamma}\end{array}\right)\left(\begin{array}{cc}A(F) & B(F) \\ \hline C(F) & D(F) \\ 0 & 1\end{array}\right) \prec 0$.
Moreover, we have

$$
\gamma_{\mathrm{dof}} \leq \gamma_{\mathrm{opt}} \leq \gamma_{\mathrm{F}}
$$

for γ_{F} being the infimal γ such that the above LMIs are feasible.
Applying elimination lemma to eliminate F from second LMI leads to:

$$
(\bullet)^{T}\left(\begin{array}{cc|c}
0 & x^{-1} & \\
x^{-1} & 0 & \\
\hline & & P_{\gamma}^{-1}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-A^{T} & -C^{T} \\
\hline 0 & 1 \\
-B^{T} & -D^{T}
\end{array}\right) U \succ 0 .
$$

Dual Design Problems

Full-actuation (FA) design:

$$
\binom{\dot{x}(t)}{e(t)}=\left(\begin{array}{cc}
A(E) & B(E) \tag{2}\\
C(E) & D(E)
\end{array}\right)\binom{x(t)}{d(t)}=\left(\begin{array}{ll}
A+E_{1} C_{2} & B+E_{1} D_{21} \\
C+E_{2} C_{2} & D+E_{2} D_{21}
\end{array}\right)\binom{x(t)}{d(t)} .
$$

Lemma 6. There is a FA gain E s.th. $\|(2)\|_{\infty}<\gamma$ iff there is a matrix $X \succ 0$ with

$$
(\bullet)^{T}\left(\begin{array}{cc}
0 & X \\
\left.\begin{array}{lll}
x & & \\
\hline & P_{\gamma}
\end{array}\right)
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
A & B \\
C & B \\
0 & 1
\end{array}\right) V \prec 0 .
$$

Dual Design Problems

Full-actuation (FA) design:

$$
\binom{\dot{x}(t)}{e(t)}=\left(\begin{array}{ll}
A(E) & B(E) \tag{2}\\
C(E) & D(E)
\end{array}\right)\binom{x(t)}{d(t)}=\left(\begin{array}{ll}
A+E_{1} C_{2} & B+E_{1} D_{21} \\
C+E_{2} C_{2} & D+E_{2} D_{21}
\end{array}\right)\binom{x(t)}{d(t)} .
$$

Lemma 6. There is a FA gain E s.th. $\|(2)\|_{\infty}<\gamma$ iff there is a matrix $X \succ 0$ with

$$
(\bullet)^{T}\left(\begin{array}{cc|}
0 & X \\
X & 0
\end{array} \left\lvert\,-\begin{array}{cc}
1 & 0 \\
\hline & P_{\gamma}
\end{array}\right.\right)\left(\begin{array}{cc}
C & B \\
C & D
\end{array}\right) V \prec 0 .
$$

Theorem 7. There is a SOF controller K satisfying $\|P \star K\|_{\infty}<\gamma$ if there exists a matrix $Y \succ 0$ satisfying
$(\bullet)^{T}\left(\begin{array}{lll}0 & Y \\ Y & 0 & \\ \hline & P_{\gamma}^{-1}\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ -A(E)^{T} & -C(E)^{T} \\ \hline 0 & I \\ -B(E)^{T} & -D(E)^{T}\end{array}\right) \succ 0 \quad \& \quad(\bullet)^{T}\left(\begin{array}{lll}0 & Y \\ Y & 0 & \\ \hline & & P_{\gamma}^{-1}\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ -A^{T} & -C^{T} \\ 0 & I \\ -B^{T} & -D^{T}\end{array}\right) U \succ 0$.
Moreover, we have

$$
\gamma_{\mathrm{dof}} \leq \gamma_{\mathrm{opt}} \leq \gamma_{E}
$$

for γ_{E} being the infimal γ such that the above LMIs are feasible.

Dual Iteration Algorithm

1. Compute the lower bound $\gamma_{\text {dof }}$ and set $k=1$.
2. Design an initial FI gain F.
3. Primal Step: Compute γ_{F} based on Theorem 5 and set $\gamma^{k}:=\gamma_{F}$.
4. Design a corresponding FA gain E.
5. Dual Step: Compute γ_{E} based on Theorem 7 and set $\gamma^{k+1}:=\gamma_{E}$.
6. If k is too large or γ^{k} does not decrease anymore stop and apply Theorem 7 to construct a close-to-optimal SOF controller K.

Else set $k=k+2$, design a corresponding FI gain F and go to Step 3 .

Dual Iteration Algorithm

1. Compute the lower bound $\gamma_{\text {dof }}$ and set $k=1$.
2. Design an initial FI gain F.
3. Primal Step: Compute γ_{F} based on Theorem 5 and set $\gamma^{k}:=\gamma_{F}$.
4. Design a corresponding FA gain E.
5. Dual Step: Compute γ_{E} based on Theorem 7 and set $\gamma^{k+1}:=\gamma_{E}$.
6. If k is too large or γ^{k} does not decrease anymore stop and apply Theorem 7 to construct a close-to-optimal SOF controller K.

Else set $k=k+2$, design a corresponding FI gain F and go to Step 3 .

- Key: Exploiting the elimination lemma.
- Algebraically, the steps are very intuitive.
- Control theoretic interpretation?

Contents

Motivation

Dual Iteration

Interpretation

Examples

Conclusions

Modifying the Original System Interconnection

Suppose we have designed a FI controller $\tilde{u}=F \tilde{y}$. Then we can incorporate it into the original interconnection with a parameter $\delta \in[0,1]$ as follows:

Note that

$$
u=\delta \hat{u}+(1-\delta) \tilde{u} .
$$

Modifying the Original System Interconnection

Suppose we have designed a FI controller $\tilde{u}=F \tilde{y}$. Then we can incorporate it into the original interconnection with a parameter $\delta \in[0,1]$ as follows:

Note that

$$
u=\delta \hat{u}+(1-\delta) \tilde{u} .
$$

\rightarrow One can view δ as a homotopy parameter

Modifying the Original System Interconnection

Suppose we have designed a FI controller $\tilde{u}=F \tilde{y}$. Then we can incorporate it into the original interconnection with a parameter $\delta \in[0,1]$ as follows:

Key observation: Finding a robust SOF controller K can be turned into a convex problem!

Modifying the Original System Interconnection

Suppose we have designed a FI controller $\tilde{u}=F \tilde{y}$. Then we can incorporate it into the original interconnection with a parameter $\delta \in[0,1]$ as follows:

Key observation: Finding a robust SOF controller K can be turned into a convex problem!

Why? The corresponding generalized plant resembles the one appearing in robust estimation problems.

Modifying the Original System Interconnection

Suppose we have designed a FI controller $\tilde{u}=F \tilde{y}$. Then we can incorporate it into the original interconnection with a parameter $\delta \in[0,1]$ as follows:

Key observation: Finding a robust SOF controller K can be turned into a convex problem!

Why? The corresponding generalized plant resembles the one appearing in robust estimation problems.
Issue: Computed gain bounds are conservative. We solve a convex but more difficult design problem since an uncertain parameter is involved.

Modifying the Original System Interconnection (2)

Remedy: We allow the controller to additionally include measurements of

$$
u=\delta \hat{u}+(1-\delta) \tilde{u}
$$

- Since the controller \hat{K} knows its output \hat{u} this is essentially as good as measuring the new uncertain signal $\tilde{w}=\delta \tilde{z}=\delta(\hat{u}-\tilde{u})$.
- The important structure is preserved!

Main Results

Lemma 8. The OL system corresponding to the last diagram is given by

$$
\left(\begin{array}{c}
\dot{x}(t) \\
\hline e(t) \\
\hdashline \tilde{z}(t) \\
\hat{y}(t)
\end{array}\right)=\left(\begin{array}{c|c:c:c}
A+B_{2} F_{1} & B+B_{2} F_{2} & B_{2} & 0 \\
\hline C+D_{12} F_{1} & D+D_{12} F_{2} & D_{12} & 0 \\
\hdashline-\bar{F}_{1} & -\bar{F}_{2} & 0 & 1 \\
\hdashline C_{2} & D_{21} & 0 & 0 \\
F_{1} & F_{2} & 1 & 0
\end{array}\right)\left(\begin{array}{c}
x(t) \\
\frac{d(t)}{} \\
\tilde{\tilde{w}(t)} \\
\hat{u}(t)
\end{array}\right)
$$

with $\tilde{z}:=\hat{u}-\tilde{u}, \tilde{w}:=\delta \tilde{z}$ as well as $\hat{y}:=\binom{y}{u}$

- We can derive convex LMI criteria for designing $\hat{K}=\left(\hat{K}_{1}, \hat{K}_{2}\right)$, e.g., via elimination.
- We obtain a desired SOF controller via $K:=\left(I-\hat{K}_{2}\right)^{-1} \hat{K}_{1}$.

Main Results

Lemma 8. The OL system corresponding to the last diagram is given by

$$
\left(\begin{array}{c}
\dot{x}(t) \\
\hline e(t) \\
\hdashline \tilde{z}(t) \\
\hat{y}(t)
\end{array}\right)=\left(\begin{array}{c|c:c:c}
A+B_{2} F_{1} & B+B_{2} F_{2} & B_{2} & 0 \\
\hline C+D_{12} F_{1} & D+D_{12} F_{2} & D_{12} & 0 \\
\hdashline-\bar{F}_{1} & -\bar{F}_{2} & 0 & 1 \\
\hdashline C_{2} & D_{21} & 0 & 0 \\
F_{1} & F_{2} & 1 & 0
\end{array}\right)\left(\begin{array}{c}
x(t) \\
\frac{d(t)}{} \\
\tilde{\tilde{w}(t)} \\
\hat{u}(t)
\end{array}\right)
$$

with $\tilde{z}:=\hat{u}-\tilde{u}, \tilde{w}:=\delta \tilde{z}$ as well as $\hat{y}:=\binom{y}{u}$

- We can derive convex LMI criteria for designing $\hat{K}=\left(\hat{K}_{1}, \hat{K}_{2}\right)$, e.g., via elimination.
- We obtain a desired SOF controller via $K:=\left(I-\hat{K}_{2}\right)^{-1} \hat{K}_{1}$.
- Furthermore, as annihilator for $\left(\begin{array}{lll}C_{2} & D_{21} & 0 \\ F_{1} & F_{2} & 1\end{array}\right)$ we can choose $\left(\begin{array}{cc}1 & 0 \\ 0 & 1 \\ -F_{1} & -F_{2}\end{array}\right) V$ with $V=\left(C_{2}, D_{21}\right)_{\perp}$ as before.

Main Results

Lemma 8. The OL system corresponding to the last diagram is given by

$$
\left(\begin{array}{c}
\dot{x}(t) \\
\hline e(t) \\
\hdashline \tilde{z}(t) \\
\hat{y}(t)
\end{array}\right)=\left(\begin{array}{c|c:c:c}
A+B_{2} F_{1} & B+B_{2} F_{2} & B_{2} & 0 \\
\hline C+D_{12} F_{1} & D+D_{12} F_{2} & D_{12} & 0 \\
\hdashline-\bar{F}_{1} & -F_{2} & 0 & 1 \\
\hdashline C_{2} & D_{21} & 0 & 0 \\
F_{1} & F_{2} & 1 & 0
\end{array}\right)\left(\begin{array}{c}
x(t) \\
\frac{d(t)}{} \\
\hdashline \tilde{w}(t) \\
\hat{u}(t)
\end{array}\right)
$$

with $\tilde{z}:=\hat{u}-\tilde{u}, \tilde{w}:=\delta \tilde{z}$ as well as $\hat{y}:=\binom{y}{u}$

- We can derive convex LMI criteria for designing $\hat{K}=\left(\hat{K}_{1}, \hat{K}_{2}\right)$, e.g., via elimination.
- We obtain a desired SOF controller via $K:=\left(I-\hat{K}_{2}\right)^{-1} \hat{K}_{1}$.
- Furthermore, as annihilator for $\left(\begin{array}{lll}C_{2} & D_{21} & 0 \\ F_{1} & F_{2} & 1\end{array}\right)$ we can choose $\left(\begin{array}{cc}1 & 0 \\ 0 & 1 \\ -F_{1} & -F_{2}\end{array}\right) V$ with $V=\left(C_{2}, D_{21}\right)_{\perp}$ as before.

$$
\left(\begin{array}{ccc}
A+B_{2} F_{1} & B+B_{2} F_{2} & B_{2} \\
C+D_{12} F_{1} & D+D_{12} F_{2} & D_{12} \\
-F_{1} & -F_{2} & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
-F_{1} & -F_{2}
\end{array}\right) V=\left(\begin{array}{cc}
A & B \\
C & D \\
-F_{1} & -F_{2}
\end{array}\right) V .
$$

Main Results

Theorem 9. There is a SOF controller \hat{K} such that the H_{∞} norm of the last interconnection is smaller than γ for all $\delta \in[0,1]$ if there exists a symmetric matrix $X \succ 0$ satisfying
$(\bullet)^{T}\left(\begin{array}{cc|}0 & X \\ X & 0\end{array} \left\lvert\,-\left(\begin{array}{cc}1 & 0 \\ A & B \\ \hline & \\ \hline & D \\ 0 & 1\end{array}\right) V \prec 0\right.\right.$ and $(\bullet)^{T}\left(\begin{array}{cc|}0 & X \\ X & 0 \\ \hline & \\ \hline & P_{\gamma}\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ \frac{A(F)}{}(F(F) \\ \hline C(F) & D(F) \\ 0 & l\end{array}\right) \prec 0$.

- These are exactly the same conditions as earlier!
- Thus we recovered the primal step in the dual iteration.

Remarks

- The second component of the dual iteration (the dual step) is related in a similar fashion to a problem that resembles robust feedforward design.
- It might be possible to obtain improved upper bounds, e.g., by
- viewing δ as a scheduling parameter,
- using dynamic IQCs for $\delta \in[0,1]$ or
- using parameter-dependent Lyapunov functions.

However, we only obtained marginal improvements that do not justify the increased complexity.

Remarks

- The second component of the dual iteration (the dual step) is related in a similar fashion to a problem that resembles robust feedforward design.
- It might be possible to obtain improved upper bounds, e.g., by
- viewing δ as a scheduling parameter,
- using dynamic IQCs for $\delta \in[0,1]$ or
- using parameter-dependent Lyapunov functions.

However, we only obtained marginal improvements that do not justify the increased complexity.

- Main Point: \hat{K} can also be designed based on parameter transformation. This allows to extend the scheme to situations were elimination is not possible, e.g.,
- H_{2} Performance
- Closed-loop poles in LMI region
- Multi-objective design
- ...

Contents

Motivation

Dual Iteration

Interpretation

Examples

Conclusions

Comparison to a hinfstruct via Examples from [5]

Example	$\gamma_{\text {dof }}$	γ^{1}	γ^{5}	γ^{9}	$\gamma_{\text {his }}$
AC3	2.97	4.50	3.70	3.63	3.64
AC4	0.56	1.29	1.05	1.02	0.96
AC18	5.40	15.98	10.76	10.71	10.70
HE4	22.84	32.29	23.94	22.84	23.80
DIS1	4.16	4.85	4.34	4.34	4.19
WEC2	3.60	6.05	4.42	4.32	4.25
BDT1	0.27	0.30	0.27	0.27	0.27
EB2	1.77	2.03	2.02	2.02	2.02
NN14	9.44	23.51	17.48	17.48	17.48

Example	$\gamma_{\text {dof }}$	γ^{1}	γ^{5}	γ^{9}	$\gamma_{\text {his }}$
PAS	0.05	3.48	0.41	0.08	-
TF3	0.25	3.63	0.52	0.40	-
NN17	2.64	-	-	-	11.22

[5] Leibfritz. COMPI ${ }_{e}$ ib: COnstraint Matrix-optimization Problem library - a collection of test examples for nonlinear semidefinite programs, control system design and related problems. 2004

Comparison to a D-K iteration for Generalized H_{2}
Design

Name	$\gamma_{\text {dof }}$	γ^{1}	γ^{3}	γ^{9}	γ_{dk}^{9}	$\gamma_{\mathrm{dk}}^{21}$
AC6	1.91	2.05	1.99	1.98	2.07	2.07
AC9	1.39	1.74	1.41	1.40	8.34	5.20
AC11	1.56	1.96	1.83	1.79	1.85	1.85
HE1	0.08	0.14	0.11	0.09	0.09	0.09
HE5	0.82	12.54	1.56	1.15	3.76	3.67
REA2	0.90	0.93	0.91	0.90	0.92	0.92
AGS	4.45	4.75	4.67	4.67	4.68	4.68
WEC2	3.71	19.56	5.73	4.95	14.71	14.70
NN14	20.90	48.11	32.99	23.00	28.94	28.91

Contents

Motivation
Dual Iteration
Interpretation
Examples
Conclusions

Conclusions and Outlook

Conclusions:

- The dual iteration is an interesting heuristic scheme for solving nonconvex design problems.
- The individual steps can be viewed as convex robust design problems with homotopy parameter δ and with estimation / feedforward structure.

Conclusions and Outlook

Conclusions:

- The dual iteration is an interesting heuristic scheme for solving nonconvex design problems.
- The individual steps can be viewed as convex robust design problems with homotopy parameter δ and with estimation / feedforward structure.

Outlook:

- Robust design based on dynamic IQC analysis results
- Robust/static design for hybrid systems
- Consensus for heterogeneous multi-agent systems

Thank you!

Tobias Holicki

tobias.holicki@imng.uni-stuttgart.de

University of Stuttgart
Department of Mathematics
Mathematical Systems Theory

