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Static Output-Feedback H,, Design

Let us consider a system

@ A ‘ B B, x(t)
e(t) = C D D1» d(t)
Y(t) G | Dy 0 u(t)

Goal: Design a static output-feedback controller

u(t) = Ky(t)

such that the resulting closed-loop H., norm is as small as possible.
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Static Output-Feedback H,, Design

Let us consider a system

@ A ‘ B B, x(t)
e(t) = C D D1» d(t)
Y(t) G | Dy 0 u(t)

Goal: Design a static output-feedback controller

u(t) = Ky(t)

such that the resulting closed-loop H., norm is as small as possible.

Issue: Computing the optimal H,, norm and finding K is a hard nonconvex
and also nonsmooth problem

Remedy: Heuristic approaches such as
o D-K iteration
@ hinfstruct [1]
@ Dual iteration [2]

[1] Apkarian and Noll. “Nonsmooth Hs Synthesis”. 2006
[2] lwasaki. “The dual iteration for fixed-order control”. 1999 1/16



Elimination Lemma [3]

Lemma 1. Let P € SP*9 with in(P) = (0, p,q) and U, V, W be given.
Then there is a matrix Z satisfying

lo TP b =<0
urzv+w urzv+w

if and only if

T TN\ T T
vf((;;) P(@)VLw and UI( ';:) P—1< ‘2/>UL>O.

v

Notation: M| is a basis matrix of the kernel of M.

Special Case: If P = (9 /) and W = 0 the LMIs, respectively, read as

Q+UTZV+(UTZV)T <0, V[QV. <0 and U[QU, <o0.

[3] Helmersson. “IQC synthesis based on inertia constraints”. 1999
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Static Output-Feedback

Theorem 2. Let P, := ((’) _32,), V = (G, Dy)1 and U = (B], D).
Then there is a SOF controller K satisfying ||P x K||cc < 7 if and only if there
exists a matrix X satisfying

0 X
CHER:
P’Y

> —~
o ©

C
0

=

and

X > 0.

Moreover, we have

K stalt?ilfzes P ”P * KHOO = ewt

for vopt being the infimal v such that the above LMIs are feasible.
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Full-Order Dynamic Output-Feedback

Theorem 3. Let P, := ((’) _Sz,), V := (G, Dy)1 and U = (B],DJ,)..
Then there is a full-order controller Kqor satisfying || P x Kqof||oo < 7 if and

only if there exist matrices X and Y satisfying

/I 0 / 0
. 0X AB . oY AT T
()" [XO —— | V=<0, ()" | YO — | U=0
P CcCD - 0 /
v 0/ v =BT ¥
and
()f ;>>o.

Moreover, we have
“Ydof < Yopt

for 4ot being the infimal ~ such that the above LMIs are feasible.
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Full-Information Controller Design

For a full-information (FI) controller
~ ~ ~ X
u=Fy=(F1,F2)y where y:= (d>
the resulting closed-loop system reads as

(46) - (c5 807 () - (¢/uk, 51k) (3)

Lemma 4. There is a Fl controller F such that ||(1)|lec < 7 if and only if
there exists a matrix Y = 0 satisfying

/ 0

(I AT T
7Y o 5| U0

P'y_ _BT _DT
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First Key Result
Once we have designed a suitable FI F, we can synthesize a SOF controller:

There is a SOF controller K satisfying ||P x K||o < 7 if there

Theorem 5.
exists a matrix X > 0 satisfying
/I 0 / 0
0 X 0 X
A B A(F) B(F)
T T
v 0/ v 0 I

Moreover, we have
Ydof S ’)/opt S YF

for ¢ being the infimal « such that the above LMlIs are feasible.
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First Key Result

Once we have designed a suitable FI F, we can synthesize a SOF controller:

Theorem 5. There is a SOF controller K satisfying ||P x K||oo < 7 if there
exists a matrix X > 0 satisfying

/I 0 / 0
0 X 0 X
T A B T A(F) B(F)
U 0/ L 0 /

Moreover, we have
Ydof S ’)/opt S YF

for ¢ being the infimal « such that the above LMlIs are feasible.

Applying elimination lemma to eliminate F from second LMI leads to:
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Dual Design Problems
Full-actuation (FA) design:

x(t)\ _ (A(E) B(E)\ (x(t)\ _(A+E1& B+ ED x(t)
(e(t)> - (C(E) D(E)) (d(t)> - <c+ E2Go D+ ElDi) (d(t)) - @)
Lemma 6. There is a FA gain E s.th. ||(2)||cc <7 iff there is a matrix X > 0

with o x i@
o (3 )(%)vw.
Pv) \oi
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Dual Design Problems
Full-actuation (FA) design:

x(t)\ _ (A(E) B(E)\ (x(t)\ _(A+E1& B+ ED x(t)
(e(t)) - (C(E) D(E)) (d(t)> - <c+ E2Go D+ ElDi) (d(t)) - @)
Lemma 6. There is a FA gain E s.th. ||(2)||cc <7 iff there is a matrix X > 0

with o x i@
@7 (2 (%) v <.
Pv) \oi

Theorem 7. There is a SOF controller K satisfying ||P x K|« < 7 if there
exists a matrix Y > 0 satisfying

I 0 I 0
oY B T T oY AT AT
(o[ v 0 M w0 & (o) YO g—f Uso0.
—1 -1
P\ B(E)T -D(EYT P\ BT pr

Moreover, we have
Ydof < Yopt < YE

for ve being the infimal v such that the above LMIs are feasible.




Dual lteration Algorithm

. Compute the lower bound 740t and set k = 1.

. Design an initial FI gain F.

. Primal Step: Compute ¢ based on Theorem 5 and set ¥ := ~¢.
. Design a corresponding FA gain E.

. Dual Step: Compute v based on Theorem 7 and set y**1 := ~¢.

. If k is too large or v* does not decrease anymore stop and apply
Theorem 7 to construct a close-to-optimal SOF controller K.

Else set k = k + 2, design a corresponding Fl gain F and go to Step 3.
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Dual lteration Algorithm

1. Compute the lower bound ~qof and set k = 1.

2. Design an initial FI gain F.

3. Primal Step: Compute v¢ based on Theorem 5 and set 7% := ~r.
4. Design a corresponding FA gain E.

5. Dual Step: Compute ¢ based on Theorem 7 and set 7% := .

6. If k is too large or v¥ does not decrease anymore stop and apply
Theorem 7 to construct a close-to-optimal SOF controller K.

Else set k = k + 2, design a corresponding Fl gain F and go to Step 3.

o Key: Exploiting the elimination lemma.
@ Algebraically, the steps are very intuitive.

@ Control theoretic interpretation?
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Modifying the Original System Interconnection

Suppose we have designed a Fl controller i = Fy. Then we can incorporate it
into the original interconnection with a parameter § € [0, 1] as follows:

Note that
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Modifying the Original System Interconnection

Suppose we have designed a Fl controller i = Fy. Then we can incorporate it
into the original interconnection with a parameter § € [0, 1] as follows:

Note that

u=20d0+(1-20)d.

=) One can view § as a homotopy parameter
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Modifying the Original System Interconnection

Suppose we have designed a Fl controller i = Fy. Then we can incorporate it
into the original interconnection with a parameter § € [0, 1] as follows:

Key observation: Finding a robust SOF controller K can be turned into a
convex problem!
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Modifying the Original System Interconnection

Suppose we have designed a Fl controller i = Fy. Then we can incorporate it
into the original interconnection with a parameter § € [0, 1] as follows:

,,,,,,,,,,,,,,,,,,,

F =

1
|
|
|
1
1
|
|
|
|
[
1
J

BB

Key observation: Finding a robust SOF controller K can be turned into a
convex problem!

Why? The corresponding generalized plant resembles the one appearing in
robust estimation problems.
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Modifying the Original System Interconnection

Suppose we have designed a Fl controller i = Fy. Then we can incorporate it
into the original interconnection with a parameter § € [0, 1] as follows:

,,,,,,,,,,,,,,,,,,,

- &)

BB

Key observation: Finding a robust SOF controller K can be turned into a
convex problem!

Why? The corresponding generalized plant resembles the one appearing in
robust estimation problems.

Issue: Computed gain bounds are conservative. We solve a convex but more
difficult design problem since an uncertain parameter is involved.
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Modifying the Original System Interconnection (2)

Remedy: We allow the controller to additionally include measurements of

u=60+(1—6)i

@ Since the controller K knows its output 4 this is essentially as good as
measuring the new uncertain signal w = 62 = (0 — ).
® The important structure is preserved!

10/16



Main Results
Lemma 8. The OL system corresponding to the last diagram is given by

A+ ByF1 | B+ BoFs

. . B, 0

| cEDer D 0eF s 0| (58
E20 1 I Dt S el N SN I 77 %
o G D>y 0 10 s
y(t) Fi F, 11 to) \EO)

with 2 := 0 — &, W := 6Z as well as § := (%)

® We can derive convex LMI criteria for designing K= (kh Rz) e.g., via
elimination.

@ We obtain a desired SOF controller via K := (I — Ky) K.
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® We can derive convex LMI criteria for designing K= (kh Rz) e.g., via
elimination.

@ We obtain a desired SOF controller via K := (I — Ky) K.

" I 0
@ Furthermore, as annihilator for (% %21 (,)) we can choose ( 0o I ) 74

—F1 —F2
with V' = (Gy, Da1) 1 as before.
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with Z:= 0 — i, w := 62 as well as y := (

=<
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® We can derive convex LMI criteria for designing K= (kh Rz) e.g., via
elimination.
@ We obtain a desired SOF controller via K := (I — Ky) K.

" I 0
@ Furthermore, as annihilator for (% %21 (,)) we can choose ( 0o I ) 74

—F1 —F2
with V' = (Gy, Da1) 1 as before.
A+BF1 B+BF, B, ] 0 A B
C+D12F1 D+Di1aFa Din ( 0 / ) V = ( c D ) V.
—Fi —F, 0 —F1 —F» —F1 —F,

11/16



Main Results

Theorem 9. There is a SOF controller K such that the H,, norm of the last
interconnection is smaller than v for all § € [0, 1] if there exists a symmetric
matrix X > 0 satisfying

I 0 I 0
0 X 0 X
A B A(F) B(F)
T o2 T M) 2PV
(o) XOP =5 | V=<0 and (o) xoP c(F o | <°
"/ \o I "\ 0

® These are exactly the same conditions as earlier!

® Thus we recovered the primal step in the dual iteration.
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Remarks

® The second component of the dual iteration (the dual step) is related in a
similar fashion to a problem that resembles robust feedforward design.

@ It might be possible to obtain improved upper bounds, e.g., by
® viewing § as a scheduling parameter,

e using dynamic IQCs for § € [0,1] or
® using parameter-dependent Lyapunov functions.

However, we only obtained marginal improvements that do not justify the
increased complexity.
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Remarks

® The second component of the dual iteration (the dual step) is related in a
similar fashion to a problem that resembles robust feedforward design.

@ It might be possible to obtain improved upper bounds, e.g., by
® viewing § as a scheduling parameter,
e using dynamic IQCs for § € [0,1] or
® using parameter-dependent Lyapunov functions.

However, we only obtained marginal improvements that do not justify the
increased complexity.

o Main Point: K can also be designed based on parameter transformation.
This allows to extend the scheme to situations were elimination is not
possible, e.g.,

® H> Performance

@ Closed-loop poles in LMI region
o Multi-objective design
°
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Comparison to a hinfstruct via Examples from [5]

Example | ~qof ~t ~> v° Yhis

AC3 297 | 450 | 3.70 | 3.63 | 3.64
AC4 0.56 1.29 1.05 1.02 | 0.96
AC18 540 | 1598 | 10.76 | 10.71 | 10.70
HE4 22.84 | 32.29 | 23.94 | 22.84 | 23.80
DIS1 416 | 485 | 434 | 434 | 419
WEC2 3.60 | 6.05 | 442 | 432 | 425
BDT1 0.27 | 030 | 0.27 | 0.27 | 0.27
EB2 177 | 203 | 2.02 | 2.02 | 2.02
NN14 9.44 | 2351 | 17.48 | 17.48 | 17.48

Example | ~qof 5y y ¥ Vhis
PAS 0.05 3.48 0.41 0.08 -
TF3 0.25 3.63 0.52 0.40 -
NN17 2.64 - - - 11.22

[5] Leibfritz. COMPIeib: COnstraint Matrix-optimization Problem library - a collection of
test examples for nonlinear semidefinite programs, control system design and related
problems. 2004
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Comparison to a D-K iteration for Generalized H,

Design
Name | yaor | 7" | 2* | 7° | & | &
AC6 | 191 | 2.05 | 1.99 | 1.98 | 2.07 | 2.07
ACO | 139 | 1.74 | 141 | 1.40 | 834 | 520
AC11 | 156 | 1.96 | 1.83 | 1.79 | 1.85 | 1.85
HEL | 0.08 | 0.14 | 011 | 0.09 | 0.09 | 0.09
HE5 | 0.82 | 1254 | 156 | 1.15 | 3.76 | 3.67
REA2 | 0.90 | 0.93 | 091 | 0.90 | 0.92 | 0.92
AGS | 445 | 475 | 467 | 467 | 468 | 4.68
WEC2 | 3.71 | 1956 | 573 | 4.95 | 14.71 | 14.70
NN14 | 20.90 | 48.11 | 32.99 | 23.00 | 28.94 | 28.91
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Conclusions and Outlook

Conclusions:

® The dual iteration is an interesting heuristic scheme for solving nonconvex
design problems.

@ The individual steps can be viewed as convex robust design problems with
homotopy parameter § and with estimation / feedforward structure.
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Conclusions and Outlook

Conclusions:

® The dual iteration is an interesting heuristic scheme for solving nonconvex
design problems.

@ The individual steps can be viewed as convex robust design problems with
homotopy parameter § and with estimation / feedforward structure.

Outlook:

@ Robust design based on dynamic IQC analysis results
@ Robust/static design for hybrid systems

® Consensus for heterogeneous multi-agent systems
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