Testing an agriculture robot in virtual crop fields

Hélène Waeselynck,

Joint work with: Clément Robert, Thierry Sotiropoulous, Jérémie Guiochet, Simon Vernhes

TrustMeIA
July 5, 2019
Toulouse France

Validation of autonomous robots

- ☐ Autonomous robots = with decisional capability
 - Have to accomplish missions in diverse and previously unknown environments
- Mostly validated by field testing
 - ✓ Costly
 - ✓ Risky in case of misbehavior
- ☐ Intensive testing in **virtual** worlds?

Spec and generation of complex 3D environments?

Test oracle? (No ground truth about the decisions to take)

Outline

- □ The Oz case study
- Design of simulation-based testing
 - Defining and generating virtual worlds & missions
 - Test oracle

□ Results and comparison with the field tests

Conclusion

OZ: an agriculture robot

- □ Developed and commercialized by Naïo Technologies
- ☐ Weeding missions
- ☐ Perception: LIDAR 2D, two cameras
- ☐ Software in C, C++: 151 KLOC

Gazebo-based simulator

- ☐ Software-in-the-loop configuration
- ☐ Focus on testing the autonomous navigation
- □ Performance issues → low-fidelity simulation
 - Simplified physics (interaction wheels/ground)
 - ✓ Small-scale crop fields

Experimentation

@Naïo:

- ☐ Light pre-validation in simulation
 - Nominal case exemplifying a non trivial mission

- ✓ Manual oracle (visual check)
- 5 test sessions in the field (each session half a day, 1-2 hours of testing)

@LAAS:

- Intensive simulation-based tests
 - √ 80 randomly-generated cases x 5 runs per case (=400 runs)
 - ✓ Range of values of parameters: expected to represent reasonable operating conditions
 - ✓ Automated oracle
 - Intended to represent reasonable requirements, not too demanding
- No information about the faults found by Naïo

RQ1: issues revealed in each case?

RQ2: practical recommendations for simulation-based testing?

Outline

- ☐ The Oz case study
- Design of simulation-based testing
 - Defining and generating virtual worlds & missions
 - Test oracle

Results and comparison with the field tests

Conclusion

World & mission Models

- □ Defining test input domain? World (and mission) models are first class citizens
- Manual production of the worlds would be tedious → procedural content generation techniques (cf. video games)

A procedurally-generated world (Minecraft game)

 Principle: randomized generation controlled by a few high-level parameters (the world model parameters)

Randomized generation

Note: the format of the generated content depends on the interfacing with the simulator

Oracle problem

- ☐ Behavior = continuous perception/decision/action
- Indeterminism
- Mission Failure ≠ Fail verdict
 - ✓ An autonomous system is allowed not to suceed in a mission!
 - ✓ How to determine whether the mission fail reveals an abnormal behavior?
- ☐ The test oracle often merely detects catastrophic events (e.g., collisions)
- ☐ Feedback from a previous study of navigation bugs helped in the identification of a richer set of abnormal behavior patterns to detect
 - 1. Requirements attached to mission phases
 - 2. Thresholds related to robot movement
 - 3. Catastrophic events
 - 4. Requirements attached to error reports
 - 5. Perception requirements

Oz: properties to check

	P1	U-turn in 5-7 maneuvers	
Mission Phases	P2	Robot maintains reference distance to the crop row	
	Р3	Sequence of weeded rows is correct	
Movement thresholds P4		Velocity < Vmax	
Catastrophic events	P5	No collision	
	P6	Robot does not go outside of the crop field	
Perception P7 Error reports P8		Self-localization with a certain precision	
		Stopping distance < dmax after reporting an error	

P2, P7: performance-related properties, should not yield a fail verdict

P4: transient violations due to low-fidelity simulation (engine braking force ignored)

Outline

- □ The Oz case study
- Design of simulation-based testing
 - Defining and generating virtual worlds & missions
 - Test oracle

■ Results and comparison with the field tests

Conclusion

Comparison approach

@LAAS (400 runs):

- 48% of the runs had a fail verdict
- 4 out of 5 properties could be violated
 - P1: U-turn in 5-7 maneuvers
 - P3: sequence of weeded rows
 - P5: collision with vegetables or red stakes
 - P6: outside of the crop field
 - P8: Stop after reporting an error
- Detailed analysis of the failed scenarios

- @Naïo (5 field test sessions):
- 23 navigation failures were reported during the field tests

Diagnosis of the software issues causing the failures

Issues	Field tests	Simul. tests
I1 - U-turn functionality	1	√
I2 - Space margin for U-turn	_	✓
I3 - Heuristics for transient perception losses	1	/
I4 - Processing of red stake images	1	_
I5 - Alignment at the beginning of a row	/	(✔)
		(with P2')
I6 - Skidding/odometry	1	_

- □ Major issue, causing most of the failures (65% field, 75% simul.)
 - collisions, entrance of wrong row, escape trajectory
 - The U-turn functionality had to be entirely re-developed

Issues	Field	Simul.
	tests	tests
I1 - U-turn functionality	/	✓
I2 - Space margin for U-turn	-	✓
I3 - Heuristics for transient perception losses	1	✓
I4 - Processing of red stake images	/	_
I5 - Alignment at the beginning of a row	/	(✔)
		(with P2')
I6 - Skidding/odometry	1	_

- ☐ Not revealed by the field tests (not noticed?)
- Conditions of use of Oz were revised to provision more space for the U-turn

	Issues	Field	Simul.
		tests	tests
	I1 - U-turn functionality	1	/
	I2 - Space margin for U-turn	-	/
	I3 - Heuristics for transient perception losses	1	/
	I4 - Processing of red stake images	✓	-
П	I5 - Alignment at the beginning of a row	✓	(✔)
			(with P2')
	I6 - Skidding/odometry	✓	-

Observed both in the field and in simulation

In simulation only: other misalignment cases

Issues	Field	Simul.
	tests	tests
I1 - U-turn functionality	1	1
I2 - Space margin for U-turn	_	/
I3 - Heuristics for transient perception losses	1	/
I4 - Processing of red stake images	1	-
I5 - Alignment at the beginning of a row	1	(✔)
		(with P2')
I6 - Skidding/odometry	1	_

- ☐ Intensive simulation-based testing is effective
 - ✓ Finds real issues (causing 87% of the failures observed by field testing)
 - ✓ Is helpful to show the different failure cases induced by a given issue
 - ✓ Even uncovers a new issue

Confirmed issues (missed in simulation)

Issues	Field	Simul.
	tests	tests
I1 - U-turn functionality	/	1
I2 - Space margin for U-turn	-	/
I3 - Heuristics for transient perception losses	/	✓
I4 - Processing of red stake images	✓	-
I5 - Alignment at the beginning of a row	/	(✔)
		(with P2')
I6 - Skidding/odometry	✓	-

- ☐ Issues missed by the simulation-based tests:
 - ✓ I4 the simulated images are too clear and crisp compared to the real ones (suggests that visual hazards should be added)
 - √ I6 the simulation is not accurate wrt skidding, slippage or sliding.

Spurious failures (in simulation only)

☐ Spurious P8 violations

P8 | Stopping distance < dmax after reporting an error

Bug in the simulator (simulation of the stop)

☐ Spurious P4 violations

P4 Velocity < Vmax

Transient overspeed due to low-fidelity simulation (engine braking force ignored), does not correspond to a real behavior

Outline

- □ The Oz case study
- Design of simulation-based testing
 - Defining and generating virtual worlds & missions
 - Test oracle

Results and comparison with the field tests

Conclusion

Conclusion (RQ1: issues revealed)

- Many navigation bugs do not require a high physical fidelity (see also a previous study with another robot*)
- * Can robot navigation bugs be found in simulation? An exploratory study, QRS 2017.
- □ Intensive (rather than light) pre-validation in simulation is effective
 - ✓ Promising in order to alleviate the costly field tests
- ☐ But the simulation may also introduce spurious failures
 - ✓ Bugs in the simulation code
 - ✓ Unrealistic behavior that would not occur in real world
- □ Naïo's strategy has evolved
 - Lighter simulation platform (simplified wrt the Gazebo-based one, easier to maintain)
 - ✓ Set of diverse test cases

Conclusion (RQ2: recommendations)

- □ Test generation and oracle: design for evolvavibility
 - ✓ Hard to specify
 - ✓ To be continuously improved as more experience is gained on the system (e.g., from the field tests)
- Generation
 - ✓ Well-structured world model to accommodate the addition/removal/modification of elements
 - ✓ Must also accommodate constraints on the generation parameters
- Oracle
 - ✓ Set of error detectors, each focused on a property
 - ✓ Five broad classes of properties to check
 - ✓ Separate data recording (online) and data analysis (offline)
 - ✓ Detectors can be added/revised/removed without having to re-execute the tests