
Testing an agriculture robot

in virtual crop fields

Hélène Waeselynck,
Joint work with: Clément Robert, Thierry

Sotiropoulous, Jérémie Guiochet, Simon Vernhes

TrustMeIA
July 5, 2019

Toulouse France

2

Validation of autonomous robots

¨ Autonomous robots = with decisional capability
ü Have to accomplish missions in diverse and previously unknown

environments

¨ Mostly validated by field testing
ü Costly
ü Risky in case of misbehavior

¨ Intensive testing in virtual worlds?

Spec and generation of
complex 3D environments?

Test oracle? (No ground truth
about the decisions to take)

Virtual world ≠ real world!

MORSE
Inputs

Generator Analyzer

Experiment
report

Traces

World

Mission

SIMULATOR

3

Outline

¨ The Oz case study

¨ Design of simulation-based testing
§ Defining and generating virtual worlds & missions

§ Test oracle

¨ Results and comparison with the field tests

¨ Conclusion

4

OZ: an agriculture robot

¨ Developed and commercialized by Naïo Technologies

¨ Weeding missions

¨ Perception: LIDAR 2D, two cameras

¨ Software in C, C++: 151 KLOC

5

Gazebo-based simulator

¨ Software-in-the-loop configuration
¨ Focus on testing the autonomous navigation
¨ Performance issues à low-fidelity simulation

ü Simplified physics (interaction wheels/ground)
ü Small-scale crop fields

Mission description World description

Gazebo simulatorOzCore

.json .jpg .sdf .sdf

Perception

Speed command

6

Experimentation

@Naïo:

¨ Light pre-validation in simulation
ü Nominal case exemplifying a non

trivial mission

ü Manual oracle (visual check)

q 5 test sessions in the field (each
session half a day, 1-2 hours of
testing)

@LAAS:

¨ Intensive simulation-based tests
ü 80 randomly-generated cases x 5

runs per case (=400 runs)
ü Range of values of parameters:

expected to represent reasonable
operating conditions

ü Automated oracle
ü Intended to represent reasonable

requirements, not too demanding

q No information about the faults found
by Naïo

RQ1: issues revealed in each case?

RQ2: practical recommendations for simulation-based testing?

7

Outline

¨ The Oz case study

¨ Design of simulation-based testing
§ Defining and generating virtual worlds & missions

§ Test oracle

¨ Results and comparison with the field tests

¨ Conclusion

8

World & mission Models

¨ Defining test input domain? World (and mission) models are first class
citizens

¨ Manual production of the worlds would be tedious à procedural content
generation techniques (cf. video games)

¨ Principle: randomized generation controlled by a few high-level parameters
(the world model parameters)

A procedurally-generated world (Minecraft game)

9

Randomized generation

Genotype = set of chosen parameter values

Phenotype = world content
generated from the parameters

World_1 World_2 World_k

... ...

Note: the format of the generated content depends
on the interfacing with the simulator

World model = structured view of world
elements with their parameters (15)

UML class diagram +
attribute grammar (constraints)

Valid words of the grammar

-id
-descriptor
+random_create()
+create_from_descriptor(desc)
+export ()
+check_descriptor(desc)

World

-descriptor
-nb_crop_rows
-min_nb_crop_row = 1
-max_nb_crop_row = 3
-tab_gaps
-min_gap = 0.65
-max_gap = 1.65
+random_create()
+create_from_descriptor(desc)
+export ()
+check_descriptor(desc)

Field

-descriptor
-size = 257
+random_create()
+create_from_descriptor(desc)
+export ()
+check_descriptor(desc)

Terrain-descriptor
-crop_gap = 0.10
-final_track_outer
-two_pass
-first_track_outer
+random_create()
+create_from_descriptor(desc)
+export ()
+check_descriptor(desc)

Mission

-descriptor
-terrain_type
-magnitude
-min_magnitude = 0.0
-max_magnitude = 1.0
-persistence = 0.0
-seed
+random_create()

Height_map_generator_function

-matr ix
+build_image()
+generate(generation_fonction)
+create_from_descriptor(desc)
+export ()
+check_descriptor(desc)

Height_map

-descriptor
-length
-min_length = 5.0
-max_length = 15.0
-noise_amplitude_x
-min_noise_amplitude_x = 0.0
-max__noise_amplitude_x = 0.1
-noise_amplitude_y
-min_noise_amplitude_y = 0.0
-max_noise_amplitude_y = 0.1
-disappearance_probability
-min_disappearance_probability = 0.0
-max_disappearance_probability = 0.05
-vegetable_density
+random_create()
+create_from_descriptor(desc)
+export ()
+check_descriptor(desc)

Crop_row

-descriptor
+export ()

Crop
-descriptor
-position_x
-position_y
+create_from_descriptor(desc)
+check_descriptor(desc)
+export ()

Stake

-min_density = 3
-max_density = 10

Leek
-min_density = 2
-max_density = 4

Cabbage

-descriptor
-grass_density
-min_grass_density = 0
-max_grass_density = 5
+random_create()
+create_from_descriptor(desc)
+export ()
+check_descriptor(desc)

Disturbing_element

1

1

1..*

1

1

1

0..*

0..*

1

1..3

1

1

1

1

1..*

1

1

1

10

Oracle problem

¨ Behavior = continuous perception/decision/action

¨ Indeterminism

¨ Mission Failure ≠ Fail verdict
ü An autonomous system is allowed not to suceed in a mission!
ü How to determine whether the mission fail reveals an abnormal behavior?

¨ The test oracle often merely detects catastrophic events (e.g., collisions)

¨ Feedback from a previous study of navigation bugs helped in the
identification of a richer set of abnormal behavior patterns to detect

1. Requirements attached to mission phases
2. Thresholds related to robot movement
3. Catastrophic events
4. Requirements attached to error reports
5. Perception requirements

11

Oz: properties to check

P2, P7: performance-related properties, should not yield a fail verdict

P4: transient violations due to low-fidelity simulation (engine braking force ignored)

Mission Phases
P1 U-turn in 5-7 maneuvers
P2 Robot maintains reference distance to the crop row

P3 Sequence of weeded rows is correct
Movement thresholds P4 Velocity < Vmax

Catastrophic events
P5 No collision
P6 Robot does not go outside of the crop field

Perception P7 Self-localization with a certain precision
Error reports P8 Stopping distance < dmax after reporting an error

12

Outline

¨ The Oz case study

¨ Design of simulation-based testing
§ Defining and generating virtual worlds & missions

§ Test oracle

¨ Results and comparison with the field tests

¨ Conclusion

13

Comparison approach

@Naïo (5 field test sessions):

¨ 23 navigation failures were
reported during the field tests

q Diagnosis of the software issues
causing the failures

@LAAS (400 runs):

¨ 48% of the runs had a fail verdict

¨ 4 out of 5 properties could be
violated

¨ Detailed analysis of the failed
scenarios

• P1: U-turn in 5-7 maneuvers
• P3: sequence of weeded rows
• P5: collision with vegetables or red stakes
• P6: outside of the crop field
• P8: Stop after reporting an error

Same issues revealed?

14

Confirmed issues

¨ Major issue, causing most of the
failures (65% field, 75% simul.)
Ø collisions, entrance of wrong row, escape

trajectory

¨ The U-turn functionality had to be
entirely re-developed

15

Confirmed issues

¨ Not revealed by the field tests (not noticed?)

¨ Conditions of use of Oz were revised to
provision more space for the U-turn

16

Confirmed issues

Observed both in the field
and in simulation

In simulation only: other misalignment
cases

17

Confirmed issues

¨ Intensive simulation-based testing is effective
ü Finds real issues (causing 87% of the failures observed by field testing)
ü Is helpful to show the different failure cases induced by a given issue
ü Even uncovers a new issue

18

Confirmed issues (missed in simulation)

¨ Issues missed by the simulation-based tests:
ü I4 - the simulated images are too clear and crisp compared to the real ones

(suggests that visual hazards should be added)
ü I6 – the simulation is not accurate wrt skidding, slippage or sliding

19

Spurious failures (in simulation only)

¨ Spurious P8 violations

Bug in the simulator (simulation of the stop)

¨ Spurious P4 violations

Transient overspeed due to low-fidelity simulation (engine braking force
ignored), does not correspond to a real behavior

20

Outline

¨ The Oz case study

¨ Design of simulation-based testing
§ Defining and generating virtual worlds & missions

§ Test oracle

¨ Results and comparison with the field tests

¨ Conclusion

21

Conclusion (RQ1: issues revealed)

¨ Many navigation bugs do not require a high physical fidelity (see also a
previous study with another robot*)

¨ Intensive (rather than light) pre-validation in simulation is effective
ü Promising in order to alleviate the costly field tests

¨ But the simulation may also introduce spurious failures
ü Bugs in the simulation code
ü Unrealistic behavior that would not occur in real world

¨ Naïo’s strategy has evolved
ü Lighter simulation platform (simplified wrt the Gazebo-based one, easier

to maintain)
ü Set of diverse test cases

* Can robot navigation bugs be found in simulation? An exploratory study, QRS 2017.

22

Conclusion (RQ2: recommendations)

¨ Test generation and oracle: design for evolvavibility
ü Hard to specify
ü To be continuously improved as more experience is gained on the

system (e.g., from the field tests)

¨ Generation
ü Well-structured world model to accommodate the

addition/removal/modification of elements
ü Must also accommodate constraints on the generation parameters

¨ Oracle
ü Set of error detectors, each focused on a property
ü Five broad classes of properties to check
ü Separate data recording (online) and data analysis (offline)
ü Detectors can be added/revised/removed without having to re-execute

the tests

