
Risk Structures: An Approach to Risk Awareness in Robots

Mario Gleirscher University of York, UK July 10, 2019

Toulouse, FR

Risk Awareness in Autonomous Robots

Why? How?

Work in progress!

(c) EY-NO-SA 4.0 / Gleirscher / Toulouse, FR/ July 5, 2019

- Challenge: Autonomous risk handling
 State of the art: Design of local handlers
 Problem: Design of strategic handlers?
- Approach:
 Risk Structure =
 Risk handler
 in specific situation
 for partial hazard profile
- Vision: Risk-aware behaviour in all situations

for complete hazard profile

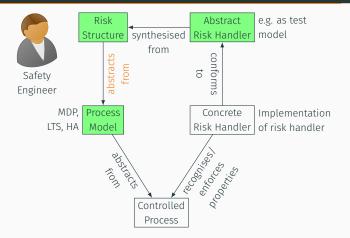
Background and Motivation

Running Example: Risk-aware Autonomous Vehicle Plant Modelling: From Dynamical to Situational Risk Identification and Assessment

Risk Structures

Risk Factors and Spaces

Risk Space Reduction: Factor Dependencies

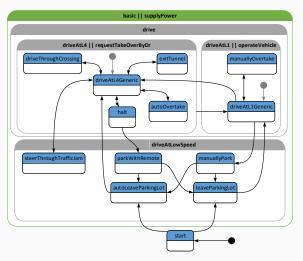

Situation Decomposition/Planning: Mitigation Orders

Summary

Background and Motivation

Risk Awareness

Engineering Challenge


RQ: How to design risk-aware robots?

RQ: How to build a risk handler for all situations/hazards?

Running Example: Risk-aware Autonomous Vehicle

Example: Situational Perspective of Urban Driving

Mode model of Ego's driving activity:

(cc) BY=NO=50 4.0 / Gleirscher / Toulouse, FR/ July 5, 2019

Hazard Profile:

1	HazardModel for "drive" {
3	OC alias "on occupied
5	; <mark>CR alias</mark> "increased collision risk"
7	; <mark>CC alias</mark> "on collision course"
9	; ICS alias "inevitable collision state"
11	; <mark>Coll alias</mark> "actual collision"
13	; <mark>ES alias</mark> "perception system fault"
15	; }

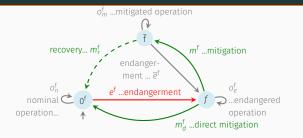
Risk factors defined in YAP

Example: Risk Identification/Assessment

BA, HazOp, LOPA, STPA, ...

Knowledge sources for risk/hazard identification, e.g.

- accident reports
- domain experts
- situation/activity model
- local dynamics model
- control system architecture
- control software

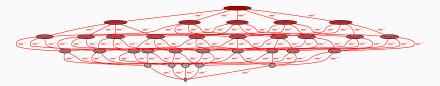

Analysis techniques with focus on

- hazard identification/classification FHA, PHL, ...
- causal reasoning Bowties, ETA, FME(C)A, (D)FTA, ...
- process/scenario analysis

Risk Structures

Risk Factors

(Basic Phase Models of Hazards)


Phase order \leq_{f} : reflexive transitive closure of $f \leq_{f} 0^{f}, f \leq_{f} \overline{f}$ Severity interval for f: $[l, u) \in \mathbb{R}^{2}$

From Risk Structures to Active Safety Monitors

Combine and activate all factors

∥^{f∈F} f

with $F = \{OC, CR, CC, ICS, Coll, ES\}$

(Examples)

causes: activation of f₁ is propagated to activation of f₂
 to model *forward causal chains* e.g. inevitable coll. state (ICS) causes actual (Coll)ision

requires: activation of f₁ requires prior activation of f₂, to model backward causal chains

e.g. coll. course (CC) requires increased coll. risk (CR)

excludes: activation of f₁ **invalidates** activation of f₂,

to express analytical focus

e.g. coll. course (CC) excludes increased coll. risk (CR)

Assessment of mitigations:

• fully comparable inclusive mitigation order:

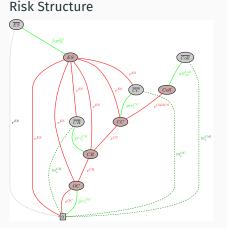
 $\left< OC0^{CR}0^{CC}0^{ICS}0^{Coll}0^{ES} \right> \leq_m \left< 0^{OC}0^{CR}0^{CC}0^{ICS}0^{Coll}0^{ES} \right>$

 \leq_m reads "more dangerous or riskier than"

· partially comparable inclusive mitigation order

 $\langle OC0^{CR}0^{CC}0^{ICS}0^{Coll}0^{ES}\rangle \lesssim_m \langle ?\overline{CR}0^{CC}0^{ICS}0^{Coll}0^{ES}\rangle$

where ? = OC or ? = 0^{OC} and OC $\leq_f 0^{OC}$, but $0^{CR} \leq_f \overline{CR}$


strong mitigation order

 $\langle 0^{OC} 0^{CR} 0^{CC} 0^{ICS} Coll \overline{ES} \rangle \leq_{\mathsf{m}} \langle 0^{OC} 0^{CR} 0^{CC} 0^{ICS} \overline{Coll} \overline{ES} \rangle$

Summary

Risk Awareness in Autonomous Robots

Why? How?

Work in progress!

(c) EY-NO-SA 4.0 / Gleirscher / Toulouse, FR/ July 5, 2019

- Challenge: Autonomous risk handling
 State of the art: Design of local handlers
 Problem: Design of strategic handlers?
- Approach:
 Risk Structure =
 Risk handler
 in specific situation
 for partial hazard profile
- Vision: Risk-aware behaviour in all situations for complete hazard profile