LAAS-CNRS Internal Report

TAF : Testing Automation Framework
v2.0
User Manual

Contributors (Alphabetical order):
Valentin Bouziat

Jérémie Guiochet

Mateo Mangado

Clément Robert

Luca V. Sartori

Hélene Waeselynck

LAAS-CNRS

Toulouse, France

This publication is available from: HAL LINK TBD / www.laas.fr/projects/taf
December 10, 2024

LAAS |
CNRS

www.laas.fr/projects/taf

Table of Contents

Introduction

Installation
2.1 Install requirements
2.2 Install TAF

2.3 Running the first example

Using TAF as a Python library

3.1 Add TAF to your system path

3.2 Call TAF functions in a python script
3.3 Running examples

3.4 List of available examples

TAF Shell commands and Python functions
TAF Settings (in the settings.xml file)

Test model file definition
6.1 How to write data structures
6.2 How to write constraints

Troubleshooting

References

W N NN

=) D B~ B W W

|

10

10

1. Introduction

TAF is a tool for automatic generation of test cases, starting from an XML file describing
the structure of the generated data, and the constraints over the structure. This file is called
the test_model file in this document. The generated test cases are produced in XML, but
an export facility is provided by TAF, specified by the user in Python language on how to
translate the generated XML test cases into a specific format (e.g., a JSON, a bitmap, a
CSV, etc.) for a specific system under test.

A complete description of algorithms is provided in [1], but other publications, example
and source code are available at [2]

This software is released under CeCILL-B license (similar to BSD, without copyleft) with
Copyright 2024.

2. Installation

TAF is open source in python, it does not require a proper installation, but only a copy of
the sources is required.

2.1 Install requirements

TAF has been tested on mac osx (>= 10.11), linux Ubuntu (>= 16.04), and Windows
10. As it is python-based project, we refer below the version of the packages required for
running TAF v2.0 :

* Python 3.6 Packages : (https://www.python.org/downloads/)
* Numpy 1.18.4 : (https://numpy.org/install/)
* z3-solver 4.8.17 : (https://pypi.org/project/z3-solver/)

Please refer to official webpages of these packages to see specific os requirements.

2.2 Install TAF

As TAF v2.0 is Python based, only getting the sources from the git repository is required,
using :

> git clone https://redmine.laas.fr/laas/taf. git

You can also navigate in the sources through the redmine repository :
https://redmine.laas.fr/projects/taf

https://www.python.org/downloads/
https://numpy.org/install/
https://pypi.org/project/z3-solver/
https://redmine.laas.fr/projects/taf

2.3 Running the first example

To run the first example (default one is a generation of a gradient bitmap), you have to type
the following command lines (later explained in section 4).

> c¢d yourpath/TAF/src % go into the TAF folder (after git clone)

> python3 TAF. py % launch TAF

> display all % visualize the settings

> parse_template % parse the template

> generate % generate test cases

> cat ../output/test_case_O/test_case_0.test_case % visualize the result

The generated test cases are provided in XML in the folder :
yourpath/taf/experiment/test_case_x

If you want to try TAF without the GUI, you can use the terminal typing python3 Taf.py
followed by commands, e.g.:

> python3 Taf.py set template_file_name <newfile.template>

> python3 Taf.py silent parse_template generate

The generation will be executed based on the setting.xml configuration file.

3. Using TAF as a Python library

3.1 Add TAF to your system path

Solution 1 : Add the src folder of TAF to your system path in your python script. For
example if you cloned the TAF git repository in home/Documents :

#Add TAF path to system in your python script
import sys

sys.path.append('/home/Documents/taf/src ')
import TAF

Solution 2 : (recommended for Unix systems) Edit your .bashrc file and source it :

> cat ~/.bashrc

Add the path to the TAF src folder in the bashrc file, for example :

export PYTHONPATH="${PYTHONPATH}:/home/Documents/taf/src"

> source ~/.bashrc

3.2 Call TAF functions in a python script

After adding TAF to your system path, you will be able to import the python module TAF
in your python scripts and calls TAF functions.

import TAF

#instanciate a Taf Client
myTaf = Taf.Cli()

calls to TAF functions
myTaf. do_parse_template () #parse the test model
myTaf. do_generate () #generate the test cases

You must pay attention to your location in the tree structure because all the paths of the
TAF files will depend on it.

You can change the name of the setting that you want to change. The names of the settings
are inside the file “settings.xml”.

3.3 Running examples

In each folders from the examples folder you will find one or several templates for those
examples. Every example folder is composed of 4 files:

* a python script Generate.py to call TAF as a library, parse the template and generate
test cases

* asettings XML file to parameter TAF test cases generation,

* atest model XML file to express data structure and constraints on the test cases to be
generated.

* a python script Export.py wich state the export rules to generate test_artifacts: par-
ticular files to be used as input in softwares, simulators etc..

To run the example just run the script Generator.py using python.

3.4 List of available examples

BitMap : The aim of this example is to create a gradient image in the bitmapformat.
The darkest pixel is at the bottom left corner and the lightest one at the upper right
(see Figure 8). The content of the image is structured as a set of pixel rows, where
each pixel contains a grayscale value. This is a good example for understanding TAF
functionnalities like test definitions and export function.

ConstrainedType : This example shows how to use the xml tag <type> in the test
definition model and how to define constraints on instantiated objects and/or directly
on its types.

OZ : This example is from an industrial use case of TAF described in [1]. This use
case treat the generation of a field of vegetables with a lot of constraint to ensure the
generated fields are close to the ones in reality.

Planes : This example generated test case for a Traffic alert and Collision Avoidance
System (TCAS). Two planes trajectories are generated and constraints ensure that the
trajectory and speed of both planes will make them meet at some point.

Square Root : This example is the test generation of a number and its squared value.
This is a good strating example to explore how constraint are defined on TAF object
in the test model file.

TaxPayer : This example describes the data for an income tax management appli-
cation. In this model, a tax payer” is a physical person that can support child (that
are also tax payers) and earns 1 or more income. This example enlight inheritance
concepts in TAF and how to apply constraints on it.

Tree : This example aims on the generation of tree structures of diverse sizes and
heights. This example shows how to define recursive structures (tress or binary trees)
in the TAF test model using both type abstraction and reference.

Triangles : In this example, you will find test cases generation for rectangle and
isoceles triangles. This example introduces types utilisation in TAF and constraint
definition

UAV : This example is a use case that aims to generate simulation parameters for a
drone mission GAZEBO. A test cases is an instances of obstacles of different sizes
to be disposed in a field that a flying drone must then avoid using autopilot.
https://github.com/skhatiri/Aerialist

XMLDesignPatterns : This example shows how XSD/XML design patterns can
be used in the test model file. You can find more information and examples about
XSD/XML design patterns in :
https://www.oracle.com/technical-resources/articles/java/design-patterns.html

https://github.com/skhatiri/Aerialist
https://www.oracle.com/technical-resources/articles/java/design-patterns.html

4. TAF Shell commands and Python functions

Shell Command Python Function Explanations

display all do_display : lists all the parameters.

display <param> do_display(param) . gives the value of the selected parameter .
overwrite do_overwrite() : sets overwrite to True.

print_test_case

set <parameter> <value>
silent

help

help <command_name>
parse_template

shell

generate

exit

quit

do_print_test_case()
do_set(parameter;value)
do_silent()

help_help()

do_parse_template()
do_shell(command)
do_generate()
do_exit()

do_quit()

: prints the current test case.

: sets the value of a parameter.

: sets verbose to True.

: display the list of TAF commands

: display help for a specific command
: parses test model.

: runs a shell command.

: generates the test cases.

: same as quit.

. quit Taf.

S. TAF Settings (in the settings.xml file)

Parameters

Explanations

template_path
template_file_name
experiment_path
experiment_folder_name
nb_test_cases
test_case_folder_name
nb_test_artifacts
test_artifact_folder_name
parameter_max_nb_instances
string_parameter_max_size
node_max_nb_instances
max_backtracking

max_diversity

z3_timeout

: path of the template folder.

: actual template file (to change with “’set”).

: path to create the experiment folder.

: name of the experiment folder.

: changes the number of cases.

: changes the name of this folder situated in the experiment folder.
: there can be several artifacts, this parameter must be uploaded.

: changes the name of the artifact folder.

: adapt this to the number of instances in your templates.

: size that the parameter name cannot exceed.

: reduce the multiplicity, by limiting the number of nodes.

: limit the number of backtracking steps regarding taken to find a
new solution while decreasing the depth, when it is not possible
to find a solution at a certain depth.

: limit the number of times that the diversity is injected in the
solution.

: time of generation accepted before an error message.

0NN AW~

23
24

6. Test model file definition

This section describes how to write a test model file (template) in the XML-TAF language.
We will use the example of template from OZ example. This example comes from a case
study for the generation of worlds for testing an agricultural robot in simulation as it is
described in [1].

The test model written in XML-TAF will give specifics instructions to TAF. The template
filename cannot contain a full stop punctuation mark “.” before “.template”. Furthermore,
the “.template” extension is not mandatory (it could be “.xml”) but is advised to identify
template files.

<?xml version="1.0"7>

<root name="test_case’ >
<node name="field” nb_instances="1">
<parameter name="vegetable” type="string” values="cabbage;leek” weights="5;7"/>
<node name="row” min="1" max="40">
<parameter name="length” type="real” min="10.0" max="100.0"/>
<constraint name="interval” types="forall”
expressions="row[i]\length INFEQ I.lxrow[i—1]\length;
row[i]\length SUPEQ 0.9xrow[i-1]\length”
quantifiers="1"

ranges="[1, row.nb_instances —1]"/>
<constraint name="interval_27
expressions="row[0]\ length INFEQ I.lxrow[row.nb_instances — 1]\length;
row[0]\ length SUPEQ 0.9xrow[row.nb_instances — 1]\length”/>
</node>
</node>
<node name="mission” nb_instances="1">

<parameter name="1is_first_track_outer” type="boolean”/>
<constraint name="first_track”
expressions="IMPLIES (..\ field\row.nb_instances EQ 1, .\is_first_track_outer EQ True)”/>
</node>
</root>

Fig. 1. Template file example for the autonomous weeder simulation

6.1 How to write data structures
A test case template involves five different types of XML tags:
e < root >,
e < node >,
e < parameter >,
e < constraint >.

e Jtype >

Every element must have a ‘“name” xml attribute.

The root is unique and mandatory, but both the parameters and nodes have a “nb_instances”
(number of instances) meta-attribute that allows for multiplicity. If multiplicity is not ex-
plicitly declared in the template, the number of instances is supposed to be 1.

The template in Figure 1 illustrates these structural concepts. The test case root (L3) is
composed of a node “field” (L4) and a node “mission” (L19). The node “field” has one
instance (L4), and contains a parameter “vegetable” (L5) that can take the values “leek”
or “cabbage”. A field is composed of multiple rows. In the declaration of the “row” node
(L6), the allowed number of instances is specified by its min and max values (1 and 40).
Each row element contains a parameter “length” (LL7), with min and max values as well (10
and 100). As a general rule, all numerical parameters (real or integer) must have an explicit
definition range, and all string parameters must have a set of candidate values.

TAF attaches a generator to each parameter in the structure, it aims to produce diverse
values from the parameter type. In TAF 3, types of sampling are proposed :

* Uniform sampling
* Weighted sampling
* Normal sampling

If nothing is specified in the template, uniform sampling over all possible values is used
as the default. For instance, in Figure 1, L9, the parameter “length” will be determined
in the range [10,100] with a uniform sampling. The user has also the possibility to select
other default generators. This is done when the parameter is declared, by using dedicated
attributes. The set of available generators depends on the data type. Boolean and string
parameters can have weighted choices. For instance, in Figure 1, LS5, the declaration of the
vegetable parameter introduces a biased sampling of values, where the choice “leek” (of
weight 7) is more likely than “cabbage” (of weight 5). For integer or real parameters, there
are two alternatives to uniform sampling over their definition range. The user can assign
weights to subranges of values, or request sampling according to a normal distribution with
some mean and variance. The parser of the template will check that the requested generator
is compatible with the parameter type.

<type> xml tag can be use to define reusable data-types in the test model. First define a
type the same way as a node in the test model, then you can instantiate it whith the xml
attribute type” when defining a node. For example :

<type name="my_type >
</type>
<node type="my_type”>

</node>

6.2 How to write constraints

The XML-TAF language syntax lets the user specify a list of one or more expressions
separated by a semi-colon (Figure 1, L8, L13, L21).

The expressions may involve operators :
* Logical (NOT, AND, OR, IMPLIES).
e Arithmetic (+, -, *, /).
e Relational (==, !=, <, <=, >, >= written as EQ, DIF, INF, INFEQ, SUP, SUPEQ).

Operators are use in the classical way, expect the relational which adopt the z3 style (prefix
notation, see .22 of Figure 1, the operator is first, and the operands come after).

Operators Use

Logical : <expression> DIF <expression or value>

Arithmetic : <expression> - <expression or value>

Relational : AND(<expression> INFEQ <expression>, <expression> EQ
<expression>)

The variables can be any parameter of the test case structure. They are referenced by an
access path relative to the location where the constraint is declared:

* we use the windows file system notation with separators “\”, to avoid ambiguity with
the division symbol

e “” and “..” refer to the current node and the parent node.

* Paths can include indices to refer to the instances of nodes, for instance Figure 1, L9,
row|i]\length refers to the length parameter of the ith row.

Our language also provides quantification over finite structures. For instance, the constraint
named interval (L8-12) has a universal quantification (forall) over all row instances. It has
a single quantified variable (i in L11) taking the value of row indices (L12). The language
also provides existential (exist) quantification (not used in our example). Note that it is
possible to use nested quantifiers of universal and existential types.

Additional remarks

* the template weights have to be integers

73]

* “” in the expressions in the constraints is used to separate the constraints, to not
rewrite the ranges and quantifiers (when they are the same). The result is as if there
were two different constraints. Then, Z3 will solve the constraints separately.

* the quantifiers identifier (e.g., i,j,k) can be just one letter, it is not possible to have
quantifiers like “my _iterator”

7.

Troubleshooting

You could and you will encounter errors, so here is a list of some of them, with their
solutions :

(1]

(2]

* Error : UnicodeEncodeError: “ascii’ codec can’t encode characters in position 13-
14

Solution : Use (before python3 Taf.py) export PYTHONIOENCODING=utf-8

* Error : Not correct execution of ”generate” command if another template and Export
files are replaced while executing Taf.py

Solution : If a new template will be used, close the application of Taf.py and proceed
to place the template and Export files in the respective folders, then run in the terminal
the Taf.py.

References

Clément Robert, Jérémie Guiochet, Hélene Waeselynck, and Luca Vittorio Sartori.
TAF: a tool for diverse and constrained test case generation. In 275t IEEE International
Conference on Software Quality, Reliability and Security (QRS), Hanan Island, China,
December 2021.

TAF. Testing Automation Framework. https://www.laas.fr/projects/taf, 2022. [Online;
accessed 7-July-2022].

https://www.laas.fr/projects/taf

	Introduction
	Installation
	Install requirements
	Install TAF
	Running the first example

	Using TAF as a Python library
	Add TAF to your system path
	Call TAF functions in a python script
	Running examples
	List of available examples

	TAF Shell commands and Python functions
	TAF Settings (in the settings.xml file)
	Test model file definition
	How to write data structures
	How to write constraints

	Troubleshooting
	References

