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Motivation: SkyScanner Project

Adaptive Sampling of Cumulus Clouds with a Fleet of UAVs:
Clouds remain an uncertainty in
current atmospherical models:

e Characterize the evolution of
parameters (3D wind, liquid water
content, etc.)
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Motivation: SkyScanner Project

Adaptive Sampling of Cumulus Clouds with a Fleet of UAVs:
Clouds remain an uncertainty in
current atmospherical models:

e Characterize the evolution of
parameters (3D wind, liquid water
content, etc.)

— dense spatial sampling

e Adaptive Sampling vs.
Systematic Sampling:

@ 4D map of parameters, with only 1D
manifolds available

o Information efficiency
— quantification of uncertainty

e Energy efficiency
— mapping and exploiting vertical wind.
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Motivation: SkyScanner Project

Adaptive Sampling of Cumulus Clouds with a Fleet of UAVs:
Clouds remain an uncertainty in
current atmospherical models:

e Characterize the evolution of
parameters (3D wind, liquid water
content, etc.)

— dense spatial sampling

e Adaptive Sampling vs.
Systematic Sampling:

@ 4D map of parameters, with only 1D
manifolds available

o Information efficiency
— quantification of uncertainty

e Energy efficiency
— mapping and exploiting vertical wind.

— Gaussian Process Regression
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MesoNH Simulation and Sampling Architecture

MesoNH - LES 1'

Domain: 4km x 4km x 4km \

N

@ Large Eddy Simulation(LES) of non-precipitating shallow cumulus clouds.
@ Domain: 3540s x 4km x 4km x 4km (3TB of data),
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MesoNH Simulation and Sampling Architecture

MesoNH - LES 1'

Domain: 4km x 4km x 4km

@ Large Eddy Simulation(LES) of non-precipitating shallow cumulus clouds.
@ Domain: 3540s x 4km x 4km x 4km (3TB of data),

@ Grid: 3540x161x400x400 (t,z,x,y) and dt = 1s, dx = dy = 10m,
dz =10m...100m; dz = 10m for boundary and convective cloud layer.

@ Variables: 3D wind, temperature, pressure, liquid water content(LWC),
etc.
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MesoNH Simulation and Sampling Architecture
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@ Large Eddy Simulation(LES) of non-precipitating shallow cumulus clouds.
@ Domain: 3540s x 4km x 4km x 4km (3TB of data),

@ Grid: 3540x161x400x400 (t,z,x,y) and dt = 1s, dx = dy = 10m,
dz =10m...100m; dz = 10m for boundary and convective cloud layer.

@ Variables: 3D wind, temperature, pressure, liquid water content(LWC),
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Diego Selle (RIS @ LAAS-CNRS, RT-TUM) Master’s Thesis Presentation October 12, 2016 4/19



MesoNH Simulation and Sampling Architecture

Atmospheric
simulation

3D Wind 30 Wind
Ground Trut <f\ Ground Truth
@1Hz

UAV Trajectory Wind Sensors
—
Model

Sequence N 3D Wind,
of @011 Samples|
Comman: ds.

Wind GP
Regression
Models

UAV Model

Trajectory ||
Planner Wind prediction

Domain: 4km x 4km x 4km \

N

Hyperparameter
optimization

@ Large Eddy Simulation(LES) of non-precipitating shallow cumulus clouds.
@ Domain: 3540s x 4km x 4km x 4km (3TB of data),

@ Grid: 3540x161x400x400 (t,z,x,y) and dt = 1s, dx = dy = 10m,
dz =10m...100m; dz = 10m for boundary and convective cloud layer.

@ Variables: 3D wind, temperature, pressure, liquid water content(LWC),
etc.

— Wind predictions needed under real-time constraints
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Introduction to Gaussian Process Regression

@ Bayesian Machine Learning framework

@ Generalization of the M-dim. Gaussian distribution to stochastic
processes(functions), i.e. a Gaussian distribution over functions:
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Introduction to Gaussian Process Regression

@ Bayesian Machine Learning framework

@ Generalization of the M-dim. Gaussian distribution to stochastic
processes(functions), i.e. a Gaussian distribution over functions:

output, f(x)
|
output, f(x)

.0
input, x input, x
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Introduction to Gaussian Process Regression

@ Bayesian Machine Learning framework

@ Generalization of the M-dim. Gaussian distribution to stochastic
processes(functions), i.e. a Gaussian distribution over functions:

output, f(x)
|
output, f(x)

N 0 -
input, x input, x

(a), prior (b), posterior

Two key ingredients
@ Mean function m(x): Center for the distribution of functions
@ Covariance function, matrix k(x,x’), X:
Defines smoothness and variability. Quantifies similarity.
If x,x” similar — outputs similar
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Introduction to Gaussian Process Regression

Making predictions
With training data: X, Y | new input vector x,| mean function m(x) | covariance
matrices x x = [k(xi,x;)], i,j=1,...,n| X, x = [k(x,x)], i=1,...,n]|
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With training data: X, Y | new input vector x,| mean function m(x) | covariance
matrices x x = [k(xi,x;)], i,j=1,...,n| X, x = [k(x,x)], i=1,...,n]|

p(elxe, X, Y) =N (¥, VIV) , (1)
V. =m(xs) + zx*,Xz)_(,1x(Y - m(X)), (2)
Vil = k(xe, x4) — Zx*,XZ)_(ijxT*,X (3)
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Introduction to Gaussian Process Regression

Making predictions
With training data: X, Y | new input vector x,| mean function m(x) | covariance
matrices x x = [k(xi,x;)], i,j=1,...,n| X, x = [k(x,x)], i=1,...,n]|

p(y*|x*,X,Y):N(Y*,V[y*]), (1)
V. = m(x,) + Ty, x Ty X (Y — m(X)), ()
Vil = k(xe, x4) — Zx*,XZ)_(ijxT*,X (3)
Advantages of GPR
@ Inbuilt estimation of uncertainty adapted to test inputs

Limitations

@ Mean function and covariance function are parameterized
— Expensive optimization, usually Bayesian Marginal Log-Likelihood
(several iterations of O(n%))

@ With no prior knowledge about process, “off-the-shelf”:

— m(x) = 0, k(x,x') = o® exp (225=XL)
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Introduction to Gaussian Process Regression

Types of prior knowledge to improve GPR:
@ Determining the mean function m(x)
@ Determining type and parameter distribution of covariance function
k(x,x")
@ If output multidimensional, then determine and exploit correlations
between outputs
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Introduction to Gaussian Process Regression

Types of prior knowledge to improve GPR:
@ Determining the mean function m(x)

@ Determining type and parameter distribution of covariance function
k(x,x")

@ If output multidimensional, then determine and exploit correlations
between outputs
Approaches to determine prior knowledge
@ Brute Force:

o Cross-validate implementations that combine several mean-functions,
covariance functions and output-correlation structures
— No real understanding about the process
— Computational complexity O(n®)
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Introduction to Gaussian Process Regression

Types of prior knowledge to improve GPR:
@ Determining the mean function m(x)
@ Determining type and parameter distribution of covariance function
k(x,x")
@ If output multidimensional, then determine and exploit correlations
between outputs
Approaches to determine prior knowledge

@ Brute Force:
o Cross-validate implementations that combine several mean-functions,
covariance functions and output-correlation structures
— No real understanding about the process
— Computational complexity O(n®)

@ Spatial Statistics, Geostatistics:
o Estimate statistics from data and do regular curve fitting on these statistics

to infer the priors
— Computational complexity: statistics O(n), curve fitting O(m®), m << n
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Spatial Statistics: The Variogram
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@ 2v(x,x’) is a measure of
dissimilarity between x
and x’
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Spatial Statistics: The Variogram
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Spatial Statistics: The Variogram

Y(h)
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Spatial Statistics: Estimating and fitting the Variogram

Estimating
25(h) = |Nzh)| > (Z(si) - Z(s)))?.h e RY, (4)
N(h)
N(h) = {(si,sj) :si—sj=h;i,j=1,...,n} (5)
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Spatial Statistics: Estimating and fitting the Variogram

Estimating

R 1

249(h) = N Z(Z(Si) —Z(sj))?,h e RY, (4)

N(h)
N(h) = {(si,sj) :si—sj=h;i,j=1,...,n} (5)
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Spatial Statistics: Estimating and fitting the Variogram

Estimating
25() = (] (260 — Z(5)% b € B, @
N(h)

N(h) = {(si,sj) :si—sj=h;i,j=1,...,n} (5)
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Spatial Statistics: Estimating and fitting the Variogram

Estimating
25() = (] (260 — Z(5)% b € B, @
N(h)
N(h) = {(si,sj) :si—sj=h;i,j=1,...,n} (5)
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Spatial Statistics: The Variogram and Gaussian

Process Regression

Converging variogram models and stationary covariance functions are related:
7(h) = k(0) — k(h), (7)
k(h) = ~(o0) —7(h), (8)
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Spatial Statistics: The Variogram and Gaussian

Process Regression

Converging variogram models and stationary covariance functions are related:

7(h) = k(0) — k(h), (7)
k(h) = ~(o0) —7(h), (8)
Examples:
Exponential Variogram Exponential Covariance Function
y(h) = o*(1 — exp(=)) k(h) = o® exp(—")

Gammat(h)
K(h)
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Implementation: Vertical Wind Empirical Variograms

@ 5 Clouds were segmented, and used to estimate variogramsin t, z, x, y

Cloud?2

[hel)

(
A(Ih=1)
(
(

A(|hz])
Iy ])

......

.....
.....

0.2 |/
4

0.0~ v
80 100 120 140 160
hey by hy(10m), hy(s)

@ Values at big distances are very similar in x, y
@ Variograms continue to grow over theoretical sill in x, y
— Non-stationarity, mean function?
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Implementation: New coordinates

Zwind Cross-section cloudl, z=1.135km, t=449s

26 .+ COG 2D

COM 2D zwind ||
> CcOM2DIwc | [*

N
=)

m/s

-
=)

y coordinate(km)

1.6

Lo

@ Polar coordinates based on center of LWC more “natural”

@ Vertical winds near the center are higher, near boundaries lower
— Radial mean function?
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Implementation: Estimating the Mean Function

@ Normalization of radius and vertical wind at center
@ Over 300.000 radial trends to estimate the median

Zwind Trend Global

Zwind(-)
Frequency(%)

100

60 80
Normalized Radius(%)
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Implementation: Detrended Empirical Variograms

@ Clouds were detrended with the mean function
@ New variograms were computed in the four polar directions ¢, z, p, r

12 Cloud1,t=475...480, Zwind at center = 3.85 m/s, R? of trend = 0.46

j — llhe)
| )
)

Alhal)

100 150 200
he(%). by (degrees), h.(10m)
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Implementation: Best Fit Detrended Variograms

@ Around 20-30 variograms with detrended vertical wind were fitted
— Parameters of covariance function

@ Out of four possible models tested, Exponential Variogram best fit

@ Similarity in sills suggests that range anisotropy is more accentuated

—(|r]), rP=hn"Mh, M = diag(1/2)

Exponential Variograms with median hyperparameters

~ — Exponential ~(|h|)
— Exponential 4(|h.|)
— Exponential 5(|h,|)
i —  Exponential y(|A,])
08
0.6
0.4
0.2
00 - 100 150 200

hu(s), ho(m), h,(degree), h, (%)
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Implementation: Testing the new GPR

Static CS:1.225km, noise_std:0.25m/s,rmse Sq.Exp:1.09m/s,rmse trend:0.841m/s,rmse ExpNorm1:0.831m/s

Ground truth predicted mean y.

Predicted y Prediction error

¥ coordinate(km)
y coordinate(km)
y coordinate(km)
y coordinate(km)

08 10 12 14 16 18
X coordinate (km)
Ground truth

08 10 12 L4 16
X coordinate (km)
Prediction of trend

08 10 12 14 16 18 . 08 10 12 14 16 18
x coordinate (km} X coordinate (km}
Predicted std does not appl Prediction error of trend
3 2

¥ coordinate(km)
y coordinate(km)
y coordinate(km)
y coordinate(km)

0 12 L
x coordinate (km)
Ground truth

08 10 12 14 16 18
x coordinate (km)

Predicted mean y.

08 10 12 14 16 Li 08 10 12 14 16 18
x coordinate (km) x coordinate (km)

Predicted y Viy, Prediction error
! =

¥ coordinate(km)
y coordinate(km)
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08 10 12 14 16

X 08 10 12 14 16 18
X coordinate (km)

X coordinate (km)
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Implementation: Testing the new GPR

25 . RMSE Cloudl Experiments, noise_std =0.25 m/s Predicted Standard Deviation Cloud1 Expenments, noise_std =0.25 m/s
. Exp. . Exp.
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Summary and Outlook

Summary
@ Prior on mean function v/
@ Prior on covariance function v/
@ Improved performance vs. “off-the-shelf” GPR v/
Outlook
@ Repeat line of analysis on other variables, e.g. liquid water content(LWC)
@ Exploit correlations between LWC and vertical wind

@ Integrate polar coordinates preprocessing to current adaptive sampling
scheme
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Questions

Questions?
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