Decisional issues in multi-UAV systems

Simon Lacroix
Laboratoire d’Analyse

et d’Architecture des Systémes LAAS-CNRS
CNRS, Toulouse

Lakeside Lab research days on multi-UAV systems,
Klagenfurt, Austria (July 2013)



Where do | come from?

Robotics at LAAS/CNRS, Toulouse, France

A keyword: autonomy

Research topics
— Perception, planning and decision-making, control

— Plus: control architecture, interactions, ambient
intelligence systems, learning

Research domains 3 research groups :
= Cognitive and interactive Robotics 12 full time researchers
m  Aerial and Terrestrial Field Robotics 10 university researchers
= Human and anthropomorphic motion 4 visitors
m  Bio-informatics, Molecular motion 50 PhD students
10 post-docs

Considered applications: Planetary exploration, Service and personal
robotics, virtual worlds and animation, biochemistry, embedded systems,
transport, driver assistance, defense, civil safety



Robotics @ LAAS-CNRS
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Open source software tools: www.openrobots.org




On autonomy
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On autonomy

=) Notion of dependence

* Dependance on the humans
. Command
. Skilled operators
. Lambda users
» Dependence on the infrastructure
Abandonned sensors
Localisation
Communication
Databases (géographic, semantic, ...)

. Dependence on the other robots

=) Autonomies :
- Power autonomy
- Execution control autonomy (rather “automatic control”)
- Navigation autonomy
- Decisional autonomy




From automatic control
to autonomous control

- Automatic control :
— Well defined task (“regulate variable”, “follow trajectory”...)
— “Direct” link between perception and action
— Environment well modeled

- Autonomous control :
— More general task (“reach position”, “monitor area ”...)
— Environment mostly “unknown”, variable...
— Calls for decisional processes

= “perception / Decision / Action” loop

:é: Decision

ll\

Plus :
— Processes integration
— Learning
— Interaction with humans
— Interactions with other robots

= Action



Autonomy

E.g. for a drone:

— Regulate heading / speed / altitude

s Action

— Follow a list ordered waypoints

— Follow a geometric trajectory

= Action

@& Perception

— Follow a road

— Follow a target Fo
~Decision

4

— Survey an area while avoiding threats
and obstacles

B8 Perception

“Decision”: notion of deliberation, planning, prediction
and evaluation of the outcomes of an action

S Action



On the importance of models for
o Autonomy
Planning = Simulation + Search

« Simulation of the effects of an action with a predictive model
« Search over possible organizations of possible actions to
meet a goal or to optimize a criteria

lllustration: autonomous rover navigation

Simple instance of a perception / decision / action loop:
« Gather data on the environment, structure it into a model
* Plan the trajectory to find the “optimal” one
« Execute the trajectory



On the importance of models for
o Autonomy
Planning = Simulation + Search

 Simulation of the effects of an action with a predictive model
« Search over possible organizations of possible actions to
meet a goal or to optimize a criteria

lllustration: autonomous rover navigation

* LT000 LD

Environment models:
- at the heart of autonomy
« at the heart of cooperation

Simulation = convolution of -
action and environment models



Multiple robots call for more autonomy

Main drivers for autonomy

* Dirty, Dull, Dangerous tasks

 Operations in remote areas

* Allows the deployment of complex systems
* Money savings !

Multiple robotics systems

* Are inherently more complex
« Call for new specific processes :
« Cooperation
* Task allocation
 Task coordination
* Implies new decisional architectures



Outline

Notion of Autonomy
Multiple UAVs in the sky
Multiple UAV/UGV systems

Current projects



Multiple UAVs in the sky

Environment model ? an empty space !
(possibly with a non uniform atmospheric flow field)

=) Allows for “easy” development at the core of decision

Example 1: “Monitoring a set of locations” mission

=) For a fleet of UAVs, mainly a task allocation problem:
which UAV will observe which location?



The task allocation problem

|”

The “canonica
e Given:
e A set of robots {R}
e Asetof tasks {7}
e A cost function ¢ :{RxT} —R" U {+x}
e Find the allocation A® that minimizes the cost sum (or the max. of
individual costs, or the individual cost repartition, or...)

task allocation problem:

A well-known and well-posed problem (also name “optimal allocation
problem) — but highly combinatorial

Main approaches:

* Centralized : optimization (MILP), genetic algorithm, simulated annealing
* Distributed :

* DCOP, distributed protocols
* Negotiation-based approaches:|market-based approaches




Market based task allocation

Auctions (tasks) are published, robots bid, the “best” bidder gets the task

Basic functions required
* Ability to bid: task insertion cost evaluation
« Auctioning strategies: who places auctions ?
 Overall objective function to minimize

Many possibilities for each function, e.g.:
« Task insertion
* From a simple cost addition...
- ... to a (complex) plan update
* Mix costs, risks, utilities...
* Auctioning strategies
 Centralized vs. bidders can emit auctions
* When to close the market ?
» Auctions can concern a set of tasks...
 Objective function
« Sum of individual costs, dispersion of individual costs, max of
individual costs...

B. Dias “Market-Based Multirobot Coordination: A Survey and Analysis” 2006



Market based task allocation

lllustration 1: the Multiple travelling salesman problem

» WWhite dot = auction token
» Simple task insertion

* The cost includes an
“equity” constraint

* All tasks are allocated
before moving

* All robots must fly back
home




Market based task allocation

Main features of market-based approaches
A simple protocol, applicable to a wide variety of complex
problems
« Can be distributed (can bear with communication constraints)
« Can handle dynamic events:
« Robot failures
» Unexpected events
* New tasks

* No guarantee on any optimality



Satisfying communication constraints

* One single “survey” task (=
square pattern)

* The constraint satisfaction
yields new tasks (“com relay”)




Satisfying communication constraints

lllustration: multi TSP + several constrained “survey” tasks

* 4 robots
* 5 survey tasks
» 18 places to visit




Multiple UAVs in the sky

Environment model ? an empty space !
(possibly with a non uniform atmospheric flow field)

=) Allows for “easy” development at the core of decision

Example 2: “Fly a flock of drones amidst threats”

=) For a fleet of UAVs, again mainly a task allocation
problem: which UAV will jam a threat / protect others?



Fly a flock of drones amidst threats

Given:
» A convoy mission planned on a map of known threats (EW
radars) — there are unknown threats (TF radars)
* A fleet of heterogeneous UAVs
« Some are equipped with EW jammers
« Some are equipped with defence against TF jammers
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Fly a flock of drones amidst threats

Given:

» A convoy mission planned on a map of known threats (EW

radars) — there are unknown threats (TF radars)

* A fleet of heterogeneous UAVs

« Some are equipped with EW jammers

« Some are equipped with defence against TF jammers
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Fly a flock of drones amidst threats

Given:
» A convoy mission planned on a map of known threats (EW
radars) — there are unknown threats (TF radars)
* A fleet of heterogeneous UAVs
* Some are equipped with EW jammers
« Some are equipped with defence against TF jammers

Fly safely the fleet
(“Formation-less formation
flight”) though the route

 Define the optimal
configuration (“formation”)
of UAVs

» Manage configuration
transitions




Fly a flock of drones amidst threats

Fly safely the fleet (“Formation-less formation flight”) though the
route

 Define the optimal configuration (“formation”) of UAVs

» Manage configuration transitions
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Fly a flock of drones amidst threats

lllustration




Notion of Autonomy

Multiple UAVs in the sky
Monitoring a set of locations
Fly a flock of drones amidst threats

Multiple UAV/UGV systems

Current projects

Outline



“: . Context: teams of AGVs/UGVs




Where and what for?

Dozens of heterogeneous robots cooperate to achieve
long-lasting missions in large environments

Considered missions:
 observations, scene analyses, situation assessments
* interventions in the environment
In various application contexts:
« Environment monitoring (pollutions, science, ...)
« Search and rescue
» Defense applications, Civil security



Where and what for?

Dozens of heterogeneous robots cooperate to achieve
long-lasting missions in large environments

Large scale (km3) implies:
» Faster robots, longer missions (“lifelong autonomy”)
« Communication constraints
» Large (mutli-scale) environment models



1. Planning a surveillance mission

Given:

* A team of robots

* An environment to monitor

* A set of constraints to satisfy (e.g. communications)

=) Find the (optimal) trajectories to observe the whole environment



1. Planning a surveillance mission

Given:
» A team of robots
* An environment to monitor
* A set of constraints to satisfy (e.g. communications)

Actions to plan:
» Observation tasks (hence motion tasks)
« Communications

Approach:
» A task allocation process (distributed
market-based approach)
 Large scale: necessity to interleave
allocation and decomposition processes




1. Planning a surveillance mission

The overall mission is not necessarily expressed as a set of elementary
tasks: it has to be decomposed/refined

. decompose - -

oo o $auocate ‘
*-?

allocate

Decompose then allocate Allocate then decompose



1. Planning a surveillance mission

Decomposition made according to a Hierarchical Task Network scheme
(HTN)

* Breaks down the planning complexity

 Allows auctions on variable complexity structures

i_.? Tree bids *_.?
R3 W Winner determination R3 ‘

Rl‘




1. Planning a surveillance mission




2. Navigating a rover in an unknown environment

Given:

* A team of robots

* An unknown environment

* A set of constraints to satisfy (e.g. communications)

=) Find the (optimal) trajectory for the rover to reach a given goal



2. Navigating a rover in an unknown environment

Given:
A team of robots
* An unknown environment
* A set of constraints to satisfy (e.g. communications)

Actions to plan:
* Environment modelling tasks
* Rover Motions
« Communications

Approach:
* The UAV serves the UGV, by providing traversability maps
* Find the areas to perceive relevant for the mission



2. Navigating a rover in an unknown environment

PRV RGN alssion al

(simulation with http://morse.openrobots.org )




Decision and environment models

Planning = Simulation + Search
« Simulation of the effects of an action with a predictive model
« Search over possible organizations of possible actions to
meet a goal or to optimize a criteria



Decision and environment models

Planning = Simulation + Search

» Simulation of the effects of an action with a predictive model
» Search over possible organizations of possible actions to
meet a goal or to optimize a criteria

Surveillance  Rover navigation

* Environment * Environment
Q observations modeling
\rgx\o * Motions * Motions
) .. ..
%\6\ * Communications * Communications
@5\ Task allocation scheme Heuristic graph search
2’
. . . Environment models:
Simulation = convolution of
-) - at the heart of autonomy

action and environment models :
« at the heart of cooperation



Decision and environment models

Planning = Simulation + Search
« Simulation of the effects of an action with a predictive model
— by “convolving” action models with environment
models

What are the actions to plan / decide?
* Motions
« Environment observations (payload)
« Communications (within robots, with the control station)

* Localization
* Environment perception and modeling



Decision and environment models

Planning motions

At a coarse level (itinerary)
= notion of traversability
(geometry, terrain nature)




Decision and environment models

Planning motions

At a coarse level (itinerary)
= notion of traversability
(geometry, terrain nature)

At a fine level
= geometry, terrain nature
(Digital Terrain Map)




Decision and environment models

Planning observations

* Need to predict visibilities
— geometry (2.5D or 3D)




Decision and environment models

Planning observations

* Need to predict visibilities
— geometry (2.5D or 3D)

Planning communications

* Need to predict radio
visibilities
— geometry, physical
properties




Decision and environment models

Planning localization

« GPS coverage

* INS / Odometry: terrain nature

» Exteroceptive sensors: landmarks
or other models (geometry,
appearance models, ...)




Decision and environment models

Planning localization

« GPS coverage

* INS / Odometry: terrain nature

» Exteroceptive sensors: landmarks
or other models (geometry,
appearance models, ...)

Planning environment
perception & modeling

* Need to predict the information
gain
= amount of information in the
environment models
(uncertainty, entropy...)




A database of environment models
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Building envt. models: information flow

Exhaustive
environment
description

Exteroceptive Environment
sensor data models

Geometry

Semantics

Lighting Images

Physical conditions _
properties Point clouds

Thermal

Chemical  properties
properties

Radar echoes

Temperature,
humidity...

L]

Action
models

Initial models
(GIS)



Building a digital terrain model

With a rover, using point clouds (here stereovision)
Resampling data to obtain a z=f(x,y) representation on a
regular Cartesian grid




Building a digital terrain model

With a rover, using point clouds (here Velodyne Lidar)
Resampling data to obtain a z=f(x,y) representation on a
regular Cartesian grid




Building a digital terrain model

With a UAV, using a Lidar
Resampling data to obtain a z=f(x,y) representation on a
regular Cartesian grid

[Paul Chavent @ Onera Toulouse]



Building a traversability model

With a rover, using point clouds (here stereo)
Probabilistic labeling (Bayesian supervised learning)

Possibility to introduce luminance / texture attributes
Much more up-to-date classification / learning processes exist



imgl

img2

Building a traversability model

With a drone, using vision

35



Building a traversability model

With a drone, using vision
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Building a traversability model

With a drone, using vision

Wil B
'




Building a traversability model

With a drone, using vision

Planar

Unknow

Not Planar

“True”
orthoimages




Terrain models: data structures

g

“Raster” models: .
regular Cartesian grids

......

“Raster” models: hierarchical Cartesian grids —

== Graph structures easily derived




Terrain models: data structures

Triangular irregular meshes




Terrain models: data structures

Volumetric representations: octrees
[octomap]

= Allows 3D visibility computations



Merging air/ground models?

Traversability
models

Digital terrain
models

=) Inter-robot spatial consistency required



Terrain models: key points

Whatever the encoded information (terrain class, elevation,
traversability, ...), it is essential maintain its “quality” (confidence,
precision, certainty...):

« To fuse the various sources of information
* initial model
» models built by other robots
* sensor data

 To drive the decision processes

Spatial consistency is crucial
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On the importance of localization

Localization is required to:
* Ensure the spatial consistency of the built models

* Ensure the achievement of the missions, most often defined

N«

in localization tems (“goto [goal]’, “explore / monitor
[area]l’, ...)

» Ensure the lowest level (locomotion) controls

» Ensure the proper execution of paths / trajectories



Localization solutions

Huge corpus of technological / algorithmic solutions

 Motion / accelerations sensors (dead reckoning):
Inherently drifts over time and distances

 Absolute localization means (e.g. radioed beacons)
Hardly reliable, often too coarse

=) Develop solutions relying on the robot exteroceptive sensors



On the importance of localization
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But... what localization?

Essential questions to answer:

1. With which precision ? From cm to meters
2. In which frame ? Absolute vs. local
3. At which frequency? From kHz to “sometimes”

» Ensure the lowest level (locomotion) controls
cm accuracy,
@ > 100 Hz, » Ensure the proper execution of paths / trajectories
local frame

* Ensure the spatial consistency of the built models

~m accuracy, | * Ensure the achievement of the missions, most often defined
“sometimes”, in localization tems (“goto [goal]’”, “explore / monitor

global frame [areal’, ...)



Localization precision required fora DTM

== DTM resolution ~ 10cm, height precision ~ 3cm

 Velodyne lidar provides chunks of 64 points @ 3.5 kHz:
1° error on pitch yields a 17cm elevation error @ 10m

2m/s, GPS RTK @ 20Hz
+ Xsens AHRS @ 100Hz
+ FOG gyro @ 50Hz



Localization precision required fora DTM

2m/s, GPS RTK @ 20Hz
+INS @ x Hz
+ dynamic model
+ compass x Hz

* DTM built by an UAV with a Lidar




Localization precision required fora DTM

2m/s, GPS RTK @ 20Hz
+INS @ x Hz
+ dynamic model
+ compass x Hz

* DTM built by an UAV with a Lidar
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Visual odometry: principle
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Visual odometry on a MAV (+ 3D modelling)




“Simultaneous Localization and Mapping”

e Dead reckoning

- Monotonic increase of the
position uncertainty

e SLAM
- “memory effect” of the
mapping

— Loop closures: position
uncertainty decrase



Vision-based SLAM

lllustration: 100 Hz vision / low cost INS SLAM




Vision-based SLAM

lllustration: 100 Hz vision / low cost INS SLAM




Localization precision required fora DTM

== DTM resolution ~ 10cm, height precision ~ 3cm

 Velodyne lidar provides chunks of 64 points @ 3.5 kHz:
1° error on pitch yields a 17cm elevation error @ 10m

2m/s, GPS RTK @ 20Hz
+ Xsens AHRS @ 50Hz
+ FOG gyro @ 50Hz

2m/s, RT-SLAM @ 100Hz



Localization precision required fora DTM

* DTM built by an UAV with a Lidar

2m/s, GPS RTK @ 20Hz + INS @ x
Hz + dynamic model + compass x Hz



Localization precision required fora DTM

* DTM built by an UAV with a Lidar

With positions obtained after a global
BA (could have been RT-SLAM)



SLAM issues

* SLAM processes complexity grows with the number of landmarks
=) The map size can’t scale up
* The convergence of Kalman filter based solutions can’t be guaranteed

=) The map size can’t scale up, loop closures may lead
Inconsistencies



Multi-map hierarchical SLAM

Hierarchical SLAM [Tardos-2005], a graph of “submaps”:
Local maps (EKF) of current vehicle pose and landmarks pose
(nodes)
Global map of relative transformations (edges)

Local maps:

- Fully correlated maps (robot and
landmark states)

- No information shared between local (Oh JO
maps

- Each map is initialized with no
uncertainty ®



Multi-map hierarchical SLAM

Hierarchical SLAM [Tardos-2005], a graph of “submaps”:
Local maps (EKF) of current vehicle pose and landmarks pose

(nodes)
Global map of relative transformations (edges)

Global graph of maps:
- Robot’s pose

- The state is the relative transformation
between local maps

- Block diagonal covariance before loop
closure




Multi-map hierarchical SLAM

Hierarchical SLAM [Tardos-2005], a graph of “submaps”:
Local maps (EKF) of current vehicle pose and landmarks pose
(nodes)
Global map of relative transformations (edges)

Loop closures in the global

graph: X0 %
Loop constraint /

h(x):ilc\gﬁQ"'@i-n—l@ﬁn:O P
Minimisation subject to the X1
loop constraint

1 N .
nin 5(x — Xu,)TP;l(X — Xuy) %
X

min f(x
X

) =1
h(x) =20



Multi-map hierarchical SLAM

Hierarchical SLAM [Tardos-2005], a graph of “submaps”:
Local maps (EKF) of current vehicle pose and landmarks pose
(nodes)
Global map of relative transformations (edges)

Loop closures in the global
graph: X9

Loop constraint

h(x) =%, &% ©X,1 9%, =0

Minimisation subject to the

loop constraint

1 N .
nin 5(x — Xu,)TP;l(X — Xuy) =
X

min f(x
X

) =1
h(x) =20



A distributed multi-robots multi-map approach

e Straightforward extension to hierarchical SLAM

Local level A set of fully

correlated

A graph of
map poses




A distributed multi-robots multi-map approach

=) Various loop-closing events
“Rendez-vous”: inter-robot [ . i

pose estimation )

Absolute localization i f

s

(GPS fix / localization '

wrt. an initial map) TL. ‘

Ry

~

Inter-robot landmark *

(or map) matches Z " ‘ |



Detecting loop closures between air/ground
robots

Visual point landmarks can’t be exploited

Need to focus on the M of SLAM
=) Geometry is the key




Points vs. lines In vision
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Preliminary multi-robot SLAM results

Experiments
with real data



Research perspectives on envt. models

Focus on geometric (3d, vectorized) representations

Exhaustive
environment
description

Exteroceptive Environment
sensor data models

Action
models

*

Initial models
(GIS)

Distributed models
Management

Humans in the loop: information sharing (spatial ontologies ?)



Outline

Notion of Autonomy

Multiple UAVs in the sky
Monitoring a set of locations
Fly a flock of drones amidst threats

Multiple UAV/UGV systems
lllustrations: need for environments models
lllustration of environment model building processes
Importance of localization

Current projects



The ARCAS project

www.arcas-project.eu/ : “development and experimental
validation of cooperative UAV systems for assembly and
structure construction”




The SkyScanner project

Adaptive synchronous
sampling of clouds with
a fleet of UAVs

(energy harvesting)
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The SkyScanner project

Adaptive synchronous
sampling of clouds with
a fleet of UAVs

(energy harvesting)

At each At time ¢

1. Collect infos.
where ?

2. Who flies
where ?



The SkyScanner project

Adaptive synchronous
sampling of clouds with
a fleet of UAVs

(energy harvesting)

A un instant ¢

1. Collect infos.
where ?

2. Who flies
where ?



Take home messages

» Autonomy calls for specific decisional processes

» Good representations are the foundations of good
decisions, and hence of good cooperations

* A variety of representations is required

» Geometry is certainly the most important information to
represent (but not only)

» Maintaining the quality of information is essential



