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Scope of the project

« Overall target: follow the evolution of
a cumulus cloud with multiple drones
to study entrainment and the onset of
precipitation
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Scope of the project

« 3 research axes:

— Refine aerologic models of clouds

)
— Conceive enduring micro-drones T
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— Fleet control i S

Plus: experimental developments and validations



Research axes / partners

Axis 1 : Aerologic
models

Axis 3 : Fleet

Axis 2 : Enduring drone
conception and control

* Funding amounts to five 18 months postDocs / Research Engineers



Partners and people

CNRM

Greg Roberts
Frédéric Burnet

Faycal Lamroui (Research Engineer since Feb 15" 2015)

ISAE

Emmanuel Bénard
Elkhedim Bouhoubeiny (PostDoc since Feb 15t 2015)

ONERA
Carsten Doll
X (PostDoc to hire — fall 2015)
ENAC
Gautier Hattenberger
Murat Bronz
Jean-Philippe Comdomines (Research Engineer since March 15t 2015)
Jean-Francois Erdelyi (M1 internship since April the 15t 2015)
LAAS
Simon Lacroix
Alessandro Renzaglia (Postdoc since Oct 1t 2015)
Christophe Reymann (Master internship since Feb 15t 2015)



What is the problem to solve?

“Deploy a fleet of drones so as to maximize the amount of
gathered information on the cloud” (~ adaptive sampling)

— Where to gather information?

— How to represent / maintain the gathered information?
— Which drone(s) allocate to which area?

— How to optimize the trajectories to reach these areas?
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— How to optimize the conception of the drones?
— How to optimize the control of the drones?
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Fleet control

Overall approach:

 Models

+ Hierarchized
approach

 Algorithms

* Architecture



Fleet control

Overall approach:

1. Models of the environment: winds, atmospheric
parameters, geometry

 Models

“Conceptual” model Dense model
(macroscopic, coarse scale) (~ 710m scale)

- Need to estimate these models (that evolve over time)
from data acquired online



Fleet control

Overall approach:

1. Models of the environment: winds, atmospheric

* Models parameters, geometry
-105 - =
2. Model of the drones R R N S N
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« EXpress energy variations
Kinetic (airspeed)
Potential
Stored (battery)

-> Simulations
 Of the dense cloud models: Meso-NH, JSBSim
 Of the drones : New Paparazzi Simulator
* Finer drone model(s) will be defined and exploited



Fleet control

Overall approach:

1. At a coarse (symbolic level, AT ~ 10sec)

 Algorithms

XXX

- Where should what information be gathered?
-> Who goes where?



Fleet control

Overall approach:

1. At a coarse (symbolic level, AT ~ 10sec)

2. At afiner level (AT ~ 1sec)

+ Algorithms AR

- Who goes where?



Fleet control

Overall approach:

1. Where are the information processed?

_ 2. Where are the decisions taken?
* Architecture

3. Will there be men in the loop?



Drone conception and control

Overall approach:

 Models

 Algorithms

* Architecture



<— Fleet control

Outline of the presentations / discussions

Models

Algorithms

Architecture

Drones conception
and control

1.

Faycal Lamraoui (CNRM):
« First thoughts on the conceptual model
« Setting up Meso-NH simulations
Christophe Reymann (LAAS)
+ Cloud modeling from sparse data

Christophe Reymann (LAAS)

» First thoughts on high-level planning
Alessandro Renzaglia (LAAS)

« Optimal motions in wind fields

Jean-Philippe Condomines (ENAC)
« The New Paparazzi Simulator
« First thoughts on the overall architecture
« First hardware developments

Elkhedim Bouhoubeyni (ISAE)

« Towards optimized drone conception
Carsten Doll (ONERA)

« Travaux planifiés en commande



Shallow convective clouds

Introduction




Shallow convective clouds
Why we study ?

* Significant role in controling Earth's global energy budget

* A proper parametrization of shallow cumulus is necessary to accurately model
the global radiation balance in General Circulation Models

NWP (Numerical Weather Prediction) and climate models have coarse
resolution to resolve cumulus process ===> LES (Large Eddy Simulation)

Determination of cloud properties still a persistant challenge for cloud modelling



Entrainment/Detrainment are Key processes for cumulus convection

Detrainment 6 € Entrainment

1- Dynamics of Entrainment : effect on mixing rate, buoyancy, vertical velocity
2- Microphysics of Entrainment : effect on nucleation, particle size distribution



Problem/Challenge

What is the dominant mixing mechanism ?
The Dilution of cloudy updraft is mainly cause by ?

1- Lateral Entrainment or/and 2- Cloud-top Entrainment

Long-lasting controversy

Entrainment/Detrainment — is still an active field of research
problem for > half a century

The exisiin?/mixing_w;are of very diverse

Lateral mixing models Cloud-top mixing models
Hu 1997 Raymond and Blyth 1986

Heus et al. 2008 Emanuel 1991
De Rooy et al. 2012 Yamaguchi and Randall 2008

Stevens et al 2014

The lack of observations of cumulus clouds properties has caused a divergence
in the formulation of cloud models




Problem/Challenge

Clouds are easily identifiable
(Visualy and amount of liquid water content)

* Do properties at cloud base determine the upper-level properties of the clouds ??
Are cloud properties determined by the environmental conditions they encounter 77

* None of the previous studies were able to examine how individual clouds might be
affected by the presence of many other clouds in a cloud field ??

To explore

(1) Cloud cover Vs height ?

(2) The profiles of : temperature, humidity, and vertical velocity ?

(3) The lateral and cloud top mixing rate of the cloud (Single + ensemble) Vs (1), (2) ?
(4) The effect of aerosols upon cloud lifetimes ?



Studies of shallow cumulus

Field experiments

intercomparison

!

ARM
Atmospheric Radiation Diurnal Cycle Cumulus
Measurement
BOMEX Steady state Trade wind

Barbados Oceanographic and cu
Meteorological Experiment
ATEX Trade wind cu topped
Atlantic Trade-wind Experiment with Scu
RICO
Rain in cumulus over the Ocean | Precipitating trade wind
experiment cu

LES (Large Eddy Simulation)

l

Cloud
—

Sinrgle Ensemble

——» Lifetime

Parametrization
L, Cloud height ﬂ

— Tracking Climate/NWP
Models

These experiments have been already used with MesoNH



4km

4000 m

dz =10 m=>100m

2500 m :
? dz=10 m
500 m .
dz=25m =>10m
300 m T
E dz=25m
«—>
«dx=10m >

5km

MesoNH simulation

Grid Setup

Ni=500
Nj=500
Nk=205

Timestep=0.5 sec

A/d:( 10 m

5km



MesoNH simulation

dx=dy=50 m
dz=40 m
Ni=Nj=128
Nk=90

Initial+Environment conditions

ARM (Atmospheric Radiation Measurement)
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It & 2" hours : No appearance of cloud water + Vertical velocity=0



Trace of cloud water
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3rd & 4t hours : Early response to the forcing (Increase of vertical velocity)



5t & 6™ hours : Early stage of Cumulus formation + Intensification of the vertical velocity
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Mature stage of cumulus

7h & 8™ hours : Max of Cloud water + Max of vertical velocity [-7 m.s-1 10 m.s-1]



(dilution +evaporation) of cumulus k (dilution +evaporation) of cumulus

9th & 10™ hours : decrease of (Cloud water + vertical velocity)



Zoom : 7t hour
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Skyscanner Update

Christophe Reymann

April 7, 2015



Macroscopic to local model

A macroscopic (parametric) model is needed to guide the fleet
towards zones of interest.

Need for a denser, local model :
For navigation : predict short term winds around the drone

For exploration : quantify the knowledge of the (meteo.) state of a
zone



Gaussian processes - Introduction

Problem : predict a value and a confidence from (very) sparse
observations.

Gaussian process : collection of random variables with a joint
Gaussian distribution

Mean : m(x) = E[f(x)]
Covariance : k(x, x) = E[(f(x) — m(x))(f(x") — m(x"))]

f(x) ~ GP(m(x), k(x, x"))



Gaussian processes - Introduction

20

flx) =x sin(x)
« + Observations
——  Prediction
Bl 95% confidence interval




Gaussian processes - Introduction

After some math... predicting for a single point x, :

fo =kl (K+op1)"y

VIE] = k(xe, x.) — k] (K + 02171k,

Where K is the n X n covariance matrix between examples.

Complexity using Cholesky decomposition : O(n*/3)



Gaussian Processes - Algorithmics

Seems to work well on 2D mesoNH examples

Algorithmic cost: how to scale on 3D with potentially more
points?

Existing solutions seem good, ideas :
» local GP models : several local models for prediction
» sparse Models : Retaining only key points

» update : Avoid recalculating whole model (Cholesky
decomposition update)



Gaussian Processes - Quality of solution

Open questions:

» Sparsity : will we gather enough points for Gaussian Process
to work well in 4D (x,y,z,t)?

» Kernel : Mostly kernels make locality and stationarity
assumptions. Is there room for improvement (overcome
sparsity) by injecting situation specific knowledge?



Gaussian Processes - Quality of solution - Sparsity

Space sparsity : nothing we can do about it. Shannon theorem : if
we want to measure small scale fluctuations we need observations
at twice the frequency.

Time sparsity : time is a problematic dimension
» No observation after t = present

» All our predictions will be at t > present

GP are known to handle poorly this in the general case (no prior,
standard kernels)



Gaussian Processes - Quality of solution - Kernels

Handling time in kernels (state of the art) :
» |If slow dynamics : treating time as a normal dimension.
» Time series : Recursive kernels (STORKGP) / ESN (OESGP)

» S. Sukkarieh : add mean wind drift (2D) estimation into
kernel.

New solution ?
» Add local 3D wind drift into kernel (2D drift maybe exhibits
local variance, model up- & down-drafts)
> 777

Only requirement : keep the covariance matrix symmetric
positive-definite



Gaussian Processes - MesoNH Tests




Gaussian Processes - MesoNH Tests
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Gaussian Processes - MesoNH Tests
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Gaussian Processes - MesoNH Tests




High Level Planning - Model 1

We have a set of n homogeneous robots. Total energy of robot / is
E;.

We are trying to estimate m variables :
V(t) =< Vi(t),...Vin(t) > with associated uncertainties :
U(t) =< Ui(t),...Un(t) >.

That is minimize U(t).
And maximize mission time, that is maximize the energy E.

So we have at least m + 1 criteria : how-to evaluate a cost
function ?



High Level Planning - Model 1 - Recipes

We dispose of a set of given S recipes.
Each recipe :

» Uses k robots
» Has a duration t
» Hasareward < R=Rq,..R, >

> |Is (roughly) localized in space location : Lgstart, Leng (for each
drone 7)

Precondition : the k robots are in Lgtapt
Postcondition : the k robots are in Lgqg

Modelling uncertainty ?



High Level Planning - Model 1 - Expressing Recipes 7

Task example : measure cloud’s approximate radius at altitude z

Strategy 1 : One/Many drones sample boundary points then
ransac approximation

Strategy 2 : 3 drones perform curve level tracking



High Level Planning - Model 1 - Expressing Recipes 7

Task example : measure cloud height
Strategy 1 : One drone goes from bottom to top

Strategy 2 : Two drones synchronize each other, measuring resp.
bottom and top.



High Level Planning - Model 1 - Expressing Recipes 7

Task example : map some variables in a zone
Variant 1 : Continuous mapping

Variant 2 : Take Snapshots regularly



What's next ?

Dense environment model (Gaussian Processes) :
» implement one appropriately fast method
» test some kernels asa we get new MesoNH data
» integrate with local path planner

» interface local planner with paparazzi for simulation

High level Planning : discuss and refine model



Cooperative Data Gathering
in Presence of Air Flows

Alessandro Renzaglia, Christophe Reymann,
Simon Lacroix

LAAS-CNRS
SkyScanner meeting, 07/04/2015

LAAS SkyScanner
C N E 5 GlEEI )AL OIS WO pIove

atmospheric phenomena within clouds
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Local Trajectory Generation

Maximizing collected data taking into account air flows
for navigation (energy constraint)

Two different fields as input of our optimization problem:

e Scalar utility field

e Currents vector field
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e Both fields are: 3-dimensional and time dependent
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Local Trajectory Generation
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Problem Formulation

First assumptions:

e Definition of a time-window AT (in which the maps are
static), continuous re-planning

e Single robot solution

e C(Centralized multi-robot solution (no communication
problems)



Results
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Preliminary Results

e 2D environments

e Fictitious utility map and
currents fields

e Trajectories generation:

Random sampling of feasible

trajectories for each AT time

interval

o Trajectory divided in sub-
Intervals

o Sampling in control space

Random feasible
directions every dt
(constrained)

Current Field

Va const.

Initial position

and direction

Feasible Trajectory

Utility Map

'

Optimization
Function




Preliminary Results

e 2D environments

e Fictitious utility map and
currents fields

e Trajectories generation:

Random sampling of feasible

trajectories for each AT time

interval

o Trajectory divided in sub-
intervals

o Sampling in control space
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Optimization problem

Next steps:

e Variation in the optimization to reduce the explored
space and converge to a local minimum (e.g. random
sampling + gradient descent, SPSA algorithm, etc.)

e Beyond AT: including a heuristic to add information on
what follows (e.g. high-utility region just beyond the
fixed horizon)

e Realistic energy consumption

e Simulations with real data (GPR)



Energy Consumption

In 3D, considering the real energy consumption is crucial

e How to model energy consumption?
e Not clear how to include it in the optimization problem
e Two different planning problems:

o discrete set of regions to explore

o a minimum energy before to exit each region (different
for every region)



Questions? Comments?



Skyscanner

Jean-Philippe

UAV fleet control : Condomines
« explore and exploit »

Implementation for estimating global atmospheric
phenomena

Jean-Philippe Condomines
ENAC

SkyScanner meeting - 7 april 2015

SkyScanner

Fleets of enduring drones to probe

*
4
atmospheric phenomena within clouds ﬂ ST n E

TOULOUSE




Paparazzi in a few words...

Objective of Paparazzi

Propose a complete autopilot system for micro- and mini-UAVs (rotary
wings and fixed wings)

An open source development project

@ created by Pascal Brisset and Antoine Drouin in 2003 ;

@ each developer makes available, advanced methodological contribu-
tion, technology or software;

@ ENAC is the creator and one of the main contributor of the project.
y
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Skyscanner

Jean-Philippe
Condomines

Context and main
results of my PhD




Skyscanner

Control architecture

Jean-Philippe
Condomines

Context and main
results of my PhD

task WP [ l .
mission navigation guidance control H = : Paparazzi in the
\G=» \%\ Skyscanner projet
e
3 53 g 39 Wind estimation
v} = 3 T Q 2 g b|
2 g= g £ B problem
w0 o © L v © 5
state .
. . sensors
estimation Conclusion
: outer-loop inner-loop -
deliberative e control control observation
layer management

Software architecture
@ task planning (mission ~ 1Hz);

calculation of the trajectory (navigation ~ 4Hz);

attitude control of the UAV (control ~ 60Hz) ;

data acquisition and state estimation (observation ~ 60Hz).

Q
@ tracking of the trajectory (guidance ~ 10Hz);
o
9




Skyscanner

Control architecture

Jean-Philippe
Condomines

Context and main
results of my PhD

task WP . 1 .
mission navigation guidance control H W N Paparazzi in th?
\G=» \%\ Skyscanner projet
o
3 53 g 52 Wind estimation
= = 3 T e 25
) o= SE 52 problem
w0 o © v © =
state .
e E e sensors Conclusion
: outer-loop inner-loop -
deliberative e control control observation
layer management

Software architecture

@ task planning (mission ~ 1Hz);
calculation of the trajectory (navigation ~ 4Hz);
tracking of the trajectory (guidance ~ 10Hz);
attitude control of the UAV (control ~ 60Hz) ;

state estimation (orientation, speed, etc.) of the UAV from
imperfect measurements provided by several sensors
(observation).




Main results of PhD work

Developed two algorithms for nonlinear estimation...

By redefining the estimation errors used in the standard version of the UKF.

J

...with interesting properties

@ a systematic approach that provides a formal proof of convergence(useful
for certification)) ;
@ numerical values of the gains and the error covariance of the state

converge to constant values (may be applied to improve the fault diag-
nosis and control loops) ;

IEKF » IUKF

cadre invariant

cadre non invariant

EKF * UKF

linéarisation discrétisation

Skyscanner

Jean-Philippe
Condomines

Context and main
results of my PhD




JSBSIM, Paparazzi and Flightgear visualisation

Obtain a UAV model as realistic as possible

@ Extract aerodynamics coefficients and stability derivatives from
wind-tunnel measurements and numerical analysis;

@ give a precise imperfections model of each sensor (accelerometer,
pitot tube,etc.);

@ Use an existing atmospheric model in Flightgear.

Skyscanner

Jean-Philippe
Condomines

Paparazzi in the
Skyscanner projet




Skyscanner

Wind estimation problem

e Motion modeling UAV :

@ 3 gyrogive [p, q,r];
@ 3 accelerometers give [ax, ay, az|;

Jean-Philippe
Condomines

@ 1 GPS receiver gives the velocity vector [ukg, vkg, wko] ;

@ 1 pitot tube gives the velocity airspeed Va.

i Wind estimation
Process equations problem

() = ax —gsinf + r.vy — q.wy + p1

Vi = ay —gcosfsing + p.wy — r.ug + o
Wy = az — gcosfcosop+ q.u, — q.vi + 13
uwo = f4

VWO = s

(| WWo = L6

Measurement equations

/ Barométre

u ko Ui V1 Magnétométres
vk | =B) | v | + | 2
< wko Wi V3
Uk uwp IMU : (accélérométres + gyrométres) -
Va = || Vi — BS vwWo || + vy
\ W wwy




Skyscanner

Airspeed
Jean-Philippe

Condomines

@ Measurement of the aircraft true airspeed

@ Sensors sensitivity and noise make it difficult to measure
very low airspeeds (< 5 m/s) : issue on some MAV W] i
problem

Raw dam




First results : wind estimation
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Skyscanner

Jean-Philippe
Condomines

Wind estimation
problem
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Wind estimation (U0 VO W0)
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Skyscanner

On going work...
Jean-Philippe
@ Use real data to evaluate the wind estimator; Condomines

@ Improve UAV instrumentation (angle of attack sensor, internship
Jean-Francois Erdelyi) ;

@ Create an aerodynamic model of an existing UAV in order to run
with Paparazzi - JSBSIM couple and visualize with FlightGear;

@ Finding appropriate hardware and software architecture for
planning ; Conclusion

1.2 1.2
WWW‘E&
./,:" /‘\ Planning :
we - Task
0.8 et 0.8 - Trajectory < 1Hz
A2
v
4]
',l'
g 06 CLalpha 10 m/s —— - 0.6

CLalphaC 10 m/s
CLalpha 12 m/s ----%---
) CLalphaC 12 m/s @
0.4 i CLalpha 14 m/s 1 0.4

CLalphaC 14 m/s AP : Autopilot -
Clape o+ o2 e
v CLalphaC 16 m/s — =+~ - : Central
02 o CLalpha 18 m/s -+ 4 02 Processing Unit
% CLalphaC 18 m/s —<—
CLalpha 20 m/s

‘ CLalPhaC ZQ m/s e

-6 -4 -2 0 2 4 6 8 10 12
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Instiut Supérieur de I'Adronautique et de TEspace

SkyScanner
Fleets ofer ones

Phd thesis in fluid mechanics 2009-2012 (Paris 6/Ifremer) _—

Fishing operation improvement : To minimize the drag of the fishing gear in order to
reduce the fuel consumption (HydroPé&che project, Germain et al. 2011)

pmd
1Sde

Objective of thesis : To determine the flow characteristics governgin the
hydrodynamic behaviour of porous structure

Keywords : porous structure, PIV, POD, vortex shedding, boundary layer, wake.

) 05
v b4
)
005 .
a 03
02
-]
a1
0
145 s 135 16 tes 1.7 5
L % ol

Developing boundary layer over flat plane

Vortex shedding in the wake
Drulaut et al 2012 Bouhoubeiny et al 2011

E. Bouhoubeiny Réunion du projet SkyScanner



pmd
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Instiut Supérieur de I'Adronautique et de TEspace

Post-doc in Mines Douai (2013-2014)

Enhancing the heat exchanger performance Pair of rectangular winglets
Objective : Experimental investigation of longitudinal
Vortices Generated in channel flow by a pair of
rectangular winglets

FE‘\$§‘3 e \\\\\\:\tim ....... 3 3
Los i % &N
?l : “ i i
!_ .
. -15 -1 05 0 05 1 15
yH
Example of mean velocity field at X=0 Geometrical characteristifzs of the row
for Re=13200 of pairs of rectangular winglets

E. Bouhoubeiny Réunion du projet SkyScanner



SkyScanner

Fleets of enduring drones to probe.
otmospheri phenomena withis clouds

s 4
SkyScanner Project

Objective: the study and experimentation of a fleet of mini-drones that

coordinate to adaptively sample cumulus-type clouds, over periods of the order
of one hour.

The main tackled challenges are:

« A better understanding of clouds micro-physics

* A better understanding of aerodynamic phenomena at the scale of mini-drone
* Design optimization of enduring mini-drones

* Optimized flight control, energy harvesting

 Adaptive fleet control, dynamical driven by the gathered data

E. Bouhoubeiny Réunion du projet SkyScanner
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SkyScanner

Fleets of enduring drones to probe
otmosgheric phenomena within

3 w—

Present study : design optimization of enduring mini micro-drones

Aims :
* To develop a conceptual design methodology of mini micro-UAV

* To improve the autonomous flight of the mini micro UAV by optimizing the
trajectory (wind gradients, exploiting thermal?)

* Designing mint micro UAV : using and developing suitable models describing
the characteristics of all components
* Integration of constraints related of environment : wind gradients, thermal?

E. Bouhoubeiny Réunion du projet SkyScanner
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Instiut Supérieur de I'Adronautique et space

State of the art

Conceptual design and performance for long-endurance mini-micro UAVs

CDSGN : The conceptual design tool M. Bronze et al (2009)
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Several mini UAV were designed using Cdsgn program :
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Solar Storm M. Bronze et al
(2009)

* Solar Storm : hybrid solar powered micro UAV in half a meter scale,
* SPOC : long range mini UAV

* Eternity : long endurance mini UAV

E. Bouhoubeiny

Réunion du projet SkyScanner



Isae State of the art

Sloar airplanes were designed for continuous flight

Skysailor A. Noth (2008) Sun Surfer MAV N. Diepeveen (2007)

E. Bouhoubeiny Réunion du projet SkyScanner



Current work
Procedure to establish a design methodology for micro UAV

=Configuration of the mini micro UAV
AVL, XflIr5 using panel Methods or

= Airfoil selection and performance - vortex lattice
Creating an interface with Matlab,

» Aerodynamics of wing using OpenMdao?
Table 1 Summary of two-dimensional acrofoil performance data st Re = § < 104
Maocamum Q*/C
Acrotoll General form GG G achieved @t () 1.0 G
GO 801 (rurbulated) A 25 DX 1w 13 20 1.3
(MISs A Ss 12 45 1.2
S7075 . 1.0 40 1.0
E-61 —— 45 1.3 1S 1.3
Gotngen flat plae ———————————— 6 04 0x
(o 417a curved plate I ——. s4 12 31 1.2

"Powerplant and propulsion system

We need to define the mission profile

E. Bouhoubeiny Réunion du projet SkyScanner
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Synthese de lois de pilotage

ONERA

.| Simulations de scenarii |,

Tous

Données :
geomeétriques,

inertielles,
aerodynamiques,

du Paperazzi de 'ENAC

Données :
geomeétriques,
inertielles,
aerodynamiques,
du vecteur ISAE

A

Modéles linéarisés
de synthése
x'=Ax + Bu
y =Cx + Du

Architecture des lois :
basée sur celle

du Paperazzi de I'ENAC
(consignes, capteurs, ...)

;
g




Objectifs antagonistes

Qualité de mesure
Maintien de vitesse
Maintien d'altitude
Activité de gouvernes
Consommation d‘énergie
Exploration verticale fine

du nuage

Exploration verticale
rapide du nuage

Exploration horizontale
fine du nuage

Exploration horizontale
rapide du nuage

Rejet de perturbation

SHES

+

Profit de perturbation

o

o

k Au moins 2 lois différentes



