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I. INTRODUCTION

Atmospheric scientists have been early users of UAVs,
from which significant scientific results have rapidly been
obtained (e.g. [1]). UAVs indeed bring forth several advan-
tages over manned flight to probe atmospheric phenomena:
low cost, ease of deployment, possibility to evolve in high
turbulences [2], etc. Yet atmospheric phenomena span the
three spatial dimensions and evolve over time, and their
analysis requires much more data than a single UAV can
gather. Fleets of UAVs are the natural solution to gather
more and more relevant information, and they can especially
collect synchronised observations of a series of distant areas.

This article depicts on-going work on the development
of a fleet control approach to probe low-altitude cumulus
clouds. From an atmospheric science point of view, there
remain numerous uncertainties and even unknowns in the
cloud micro-physics models that could be alleviated with
the acquisition of a variety of data within and around the
cloud. Wind currents, pressure, temperature, humidity, liquid
water content, radiance, aerosols are data of interest that
must be collected with a spatial and temporal resolution of
respectively about 10m and 1Hz over the cloud lifespan.
Deploying a fleet of UAVs for this purpose raises a series
of challenges: exploring the cloud is a poorly informed and
highly constrained adaptive sampling problem, in which the
UAVs motions must be defined so as to maximize the amount
of gathered information and the mission duration.

A wholesome global approach has been defined, which
casts the overall problem in a hierarchy of two modeling
and decision stages. A macroscopic parametrized model of
the cloud is exploited at the higher level to set information
gathering goals, possibly with an atmospheric scientist in the
loop, to each of which a subset of the UAV team is allocated,
considering e.g. their current position in the cloud, their on-
board energy level, and their sensing capacities (because
of payload constraints, the UAVs may not all embark the
same sensor suite). These goals typically consist of cloud
regions to explore, and are handled by the lower level, which
optimizes the selected UAVs trajectories using an on-line
updated dense model of the variables of interest.

The article focuses on this latter level. It sketches the
modeling and the trajectory generation processes that actively
drive a handful of UAVs within a given area, aiming at max-
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imising the information gain while minimizing the energy
consumption.

II. ENVIRONMENT MODEL

To plan energy-efficient and informative trajectories, a
model that represents both the wind currents and the atmo-
spheric variables to measure is required. The accuracy of
these information is of course of utmost importance, as it is
the dimension that steers the information gathering and that
conditions the expectation of the path costs estimates.

The considered context raises two main issues: the size
of the three-dimensional space, in which UAVs collect very
sparse measurements, and the dynamics of the considered
atmospheric phenomena. The only way to be able to predict
short term atmospheric conditions from the sparse mea-
surements is to make use of the strong spatio-temporal
correlations of the atmospheric processes. Considering the
little available knowledge about these, there are no many
efficient tools to tackle this problem.

Recent work have shown that Gaussian Processes (GP) can
successfully be used to perform spatio-temporal regression
in robotics problems. GP is a very general non-parametric
framework, where the underlying process is modeled by
“a collection of random variables, any finite number of
which have a joint Gaussian distribution” [3]. Under this
assumption, the process is defined only by its mean and
covariance functions. The mean function is often assumed
to be zero, but it can be used to set a prior. The covariance
function represents similarity between points: given a set of
n samples (x, y) and assuming zero mean, the GP y = f(x)
is fully defined by the Gram matrix Kn,n = [k(xi, xj)] of
the covariances between the sample points. The choice of
the kernel function k conditions the process distribution as
it sets a prior on the process properties such as isotropy,
stationarity or smoothness. The particularity of the GP model
is to provide full predictive distributions over all possible f ,
whose mean and variance at each point can be interpreted as
the process predicted value and associated error.

Until recently, the usage of GP models for online problems
has been prevented by prohibitive inference cost in O(n3),
due to the Cholesky decomposition of the K matrix which
must be updated each time new samples are added. Recent
algorithmic advances for streaming data and greater com-
puting power spawned several contributions solving online
problems in the robotics community [4].

Working with meteorologists, we aim to prove that this
method is adequate for mapping atmospheric conditions by
assessing its efficiency on realistic data from meso-scale



simulations. This work focuses on choosing and comparing
appropriate kernel functions to take advantage of domain
specific priors, and show that realistic atmospheric variables
can successfully be estimated online by a fleet of UAVs
(figure 1).

Fig. 1. Illustration of the estimation of the horizontal wind direction and
speed provided the application of GP regression using data perceived along
two UAVs trajectories (denoted by black stars). Left: ground truth, output
of a realistic atmospheric simulation; right: predicted wind.

III. TRAJECTORIES GENERATION

The GP regression scheme reconstructs a local air flow
and atmospheric variables map using measurements, from
which optimal trajectories that maximize the information
gathered can be generated. The motion model of the UAVs
assumes a fixed constant speed v0 with respect to the air.
The resultant ground velocity is v = v0 + c, where c is
the air speed. The motion for each UAV is then completely
characterized by the values of its three directional angles. We
do not assume any constraint on the current speed, which can
be greater than v0, and hence define unreachable areas. For
the sake of simplicity we consider here the two-dimensional
version of the problem, in which only one control angle
α determines the UAV motion. Trajectories are generated
over a short time horizon ∆T , defined by the frequency at
which the GP hyper-parameters are updated. Within this time
horizon, we consider m sections of duration dt in which the
UAV directions are constant: the trajectory for the robot j is
described by the sequence of angles α(j)

i , i ∈ {1, ...,m}.
We can now formulate the trajectory generation problem

as a constrained optimization problem:

argmax
α(1),...,α(Nr)

t0+∆T∑
t=t0

U(x1
t (α(1)), ... ,xNr

t (α(Nr))) (1)

s.t. |α(j)
i − α

(j)
i−1| ≤ ∆αmax ∀i, j (2)

where x
(j)
t is the position of the UAV j at time t, U(·)

is the utility map and Nr is the number of UAVs involved
in the mission. To tackle this optimization, we propose a
two-step approach: a first phase based on a blind random
search in order to have a good trajectories initialization,
followed by a gradient ascent algorithm to optimize them.
To perform the gradient ascent we adopted a constrained
version of the Simultaneous Perturbation Stochastic Ap-
proximation (SPSA) algorithm [5], which ensures a faster
convergence to a local maximum with respect to classic

gradient approximation algorithms. The blind random search
is achieved creating a set of feasible trajectories obtained
by a constrained random sampling of directions angles αi,
and exploiting the approximated field generated by the GP
regression. The trajectories are then evaluated using the
local utility map U , as in eq. (1), and the best set of Nr

trajectories is the initial configuration for the gradient ascent
phase. The presence of the first sampling step is due to
the strong dependence of the gradient-based solution on the
initial configuration. In this way, even though we only have
local convergence guarantees, the probability of getting stuck
in local maxima far for the global optimal trajectories is
reduced. Figure 2 shows some trajectories obtained in a
fictitious two-dimensional current field, that steers the UAVs
towards high utility regions while trying to follow the wind
direction.

Fig. 2. Left: one UAV is moving in a 2D environment where a scalar
utility map and a wind field are defined. The trajectories initialized by a
blind search at every time-horizon ∆T are shown in magenta, and the final
trajectories provided by the SPSA algorithm are in red. Right: 3 UAVs are
steered in the same environment to maximize the gathered information (only
the final trajectories are shown).

IV. FUTURE WORK

By integrating tightly the environment modeling and the
path planning processes, we hope to achieve a mutually
beneficial improvement. Indeed, by taking into account not
only the predicted values and errors, but also the shape of
the kernel function to drive the path planning algorithm, one
should allow the on-line definition of the spatio-temporal
scales, adapted to the atmospheric conditions at hand.
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