
MASTER THESIS

Deployment of a simulation software
architecture for a fleet of UAVs

Rafael Bailón-Ruiz

supervised by

Simon LACROIX

Research Director, LAAS-CNRS

Friday 24th June, 2016

Abstract

SkyScanner is a project whose mission is to guide a fleet of Unmanned Aerial Vehicles (UAVs) to
actively gather data in low-altitude cumulus clouds with the aim of mapping atmospheric variables.
This report presents the work done for the SkyScanner project at LAAS-CNRS to design and implement
a simulation software architecture for a fleet of UAVs. The new software package, based on the Robot
Operating System (ROS) framework, integrates the in-house mapping and path planning algorithms
with realistic simulators: Paparazzi open-source autopilot, FlightGear flight simulator and MesoNH
atmospheric model. Then, the whole simulation loop is tested in order to identify potential weakne-
sess. Finally, some guidance and navigation enhancements are proposed in order to improve system
performance.

Contents

Contents ii

List of Figures ii

1 Introduction 1
1.1 The SkyScanner project . 1
1.2 Previous work . 2
1.3 Motivations . 4
1.4 Objectives . 4
1.5 Requirements . 5
1.6 Report outline . 5

2 Simulation Architecture 6
2.1 Robot Operating System . 6
2.2 Time management . 6
2.3 Path planning and mapping . 7
2.4 Interface with simulation backends . 9
2.5 Execution loop . 14

3 UAV Navigation and Guidance 16
3.1 Navigation . 17
3.2 Stabilization . 17
3.3 Carrot-chasing guidance . 18
3.4 Pure pursuit and LOS guidance . 19
3.5 Vector field guidance . 20

4 Conclusion and future work 25

Appendix 26
Improvements to the ROS framework . 26

Bibliography 28

List of Figures

1.1 Coarse cloud schema . 1
1.2 Gaussian Process with noise . 3
1.3 Illustration of the trajectory generation process in a realistic wind field 3

ii

1.4 UAV trajectory produced by the mapping and path planning library 4

2.1 Clock generation node and related topics . 7
2.2 Planning chronogram . 7
2.3 Path planner ROS graph . 8
2.4 GP optimizer ROS graph . 8
2.5 Path search simulator (simuav) ROS graph . 9
2.6 Interface between MesoNH data and flight simulators . 10
2.7 Interface scheme between Paparazzi and SkyScanner ROS package 10
2.8 ROS graph of paparazziuav . 11
2.9 Planned and performed trajectory of an easystar UAV in paparazzi’s simulator without wind . 11
2.10 Cross-track error of trajectory in Figure 2.9 . 12
2.11 Interface scheme between FlightGear and SkyScanner ROS package 13
2.12 guidance node ROS graph . 13
2.13 Trajectories of two aircrafts simultaneous simulation . 14
2.14 ROS graph of the complete execution loop using two flight simulation backends 15

3.1 Control layers of autonomous aerial vehicles . 16
3.2 Guidance problem definition for circumference path. 16
3.3 Aircraft stabilization control loop scheme. 17
3.4 Heading stabilization step response for a malolo 1 UAV. 18
3.5 Circumference tracking comparison for different Virtual Target Point distances. 18
3.6 Circumference tracking with constant 7.5 m/s east component wind. 19
3.7 Planned and performed trajectory of an easystar UAV in paparazzi’s simulator without wind . 19
3.8 Planned and performed trajectory of a malolo 1 UAV in FlightGear simulator with realistic

MesoNH wind and PLOS guidance. 20
3.9 Cross-track error of trajectory in Figure 3.8 . 21
3.10 Measured airspeed during the flight of Figure 3.8. 21
3.11 Geometrical definitions of vector field algorithm mathematical components. 22
3.12 Planned and performed trajectory of a malolo 1 UAV in FlightGear simulator with VF guidance. 23
3.13 Cross-track error of trajectory in Figure 3.12 . 23
3.14 Measured airspeed during the flight of Figure 3.12. 24

1 Screenshot of rqt_plotxy . 27
2 ROS graph of stats node . 27

iii

Chapter 1

Introduction

1.1 The SkyScanner project

Meteorological scientists have nowadays great knowledge of atmosphere at macroscopic level, pre-
dicting events with accuracy. However at fine-grained level there are still lots of uncertainties, mostly at
the boundary layer of clouds.

SkyScanner is devoted to the study and experimentation of using a fleet of drones to adaptatively
sample cumulus-type clouds, following their evolution to study entrainment and the onset of precipi-
tation [1]. The objective is to characterize the state of boundary layer below and surrounding a cloud,
its atmospheric stability, lifting condensation level and updraft (upward-moving air current), shown in
Figure 1.1.

Figure 1.1: Coarse cloud schema. The physical processes at the boundary of the clouds remain not
precisely understood by the atmosphere scientists.

The measurements of some parameters like aerosols can be taken from ground using LIDARs, that
measure backscatter from the atmosphere, although other variables such as updraft can not be sampled.
Thus, cloud microphysics can not be completely understood without in-situ measurements. Manned
planes could accomplish in-situ measurements with on board instruments but are too fast and their size
is too big to be able to focus on a single cloud nor taking fine samples. Also, there is a need to sample
several places at the same time, which a single plane can not achieve. Furthermore, campaigns with
manned aircrafts has a prohibitive cost for most research groups and institutions.

In recent days small fixed-wing unmanned aerial vehicles, also known as drones, have changed the
landscape of atmosphere science. They are cheaper and smaller, and so they can be deployed faster,
more often, in more situations and in bigger numbers. In fact UAVs are already being used by atmosphere
scientists to follow some meteorological phenomena. But a single UAV is not sufficient to sample a whole
cloud that can occupy a volume of up to one kilometer cube, which evolves through time: the benefits of
exploiting a coordinated fleet of drones is obvious to gather in-situ cloud data.

1

The SkyScanner project aims at developing a fleet of drones to probe cumulus clouds. It is a joint
effort of: CNRM-GAME1 bringing cloud models and meteorological knowledge; ISAE2 and ONERA3,
providing endured drones; and ENAC4 and LAAS-CNRS5 contributing to fleet control.

1.2 Previous work

Studying the evolution of clouds is intrinsically a 4D problem as they not only evolve in space but also
in time. Already explored areas of the map loose value as time passes because of atmosphere evolution.
Additionally, data are gathered over 1D manifolds (curves) of the four-dimensional space. Therefore,
exploring a cloud by a fleet of drones is very different from the classic robotic exploration problem, where
the robots perceive a whole surface or volume from one position: here the UAVs perceive only local data
at their position. These particularities condition the developed solutions to create a map of the cloud and
to explore it.

Mapping and path planning are interleaved processes: the mapping algorithm needs information
about the unknown surrounding environment. On the other hand, the planning needs the map to
generate paths that optimize the amount of gathered information and the spent energy.

The following subsections present the way these processes have been designed by LAAS within the
SkyScanner project.

Mapping

The mapping task consists in reconstructing a continuous 4D (position and time) map from punctual
and sparse measurements of wind6. It uses Gaussian Processes to solve this regression problem, a
collection of random variables which have a joint Gaussian distribution. The interpolation mechanism of
Gaussian Processes is also known as kriging.

Gaussian Process variables are defined by their mean m(x), and covariance matrix, which is defined
by a kernel, k(x,x′):

m(x) = E[f (x)],

k(x,x′) = E[f (x)−m(x)(f (x′)−m(x′))],
(1.1)

The choose of a kernel function is important, as it sets a prior knowledge about the underlying process
like its stationary or periodicity. At the same time the set of hyperparameters of the kernel function
should be determined according to the actual sparse samples. This means that a continuous optimization
process of the hyperparameters is necessary.

Then the inference process is performed with Equation 1.2, where ȳ? is the mean and V[y?] the
variance at point x? of the functions represented by the Gaussian Process conditioned by the X previous
samples.

ȳ? = E[y?|x?,X, y] = K (x?,X)K (X,X)−1 y,

V[y?] = E[(y?− ȳ?)2] = k(x?,x?)−K (x?,X)>K (X,X)−1K (x?,X)
(1.2)

Applying the inference process over multiple points allows to estimate a continuous function, like the
one in shown in Figure 1.2, with an associated variance.

2

Figure 1.2: Gaussian Process with noise

Figure 1.3: Illustration of the trajectory generation process in a realistic wind field, for a planning horizon
∆T = 20 seconds. Projections on the xy plane for the random sampling initialization, optimized trajectory
and final trajectory executed by the UAV are shown. The red star represents the initial position and the
map colors shows the vertical component of the wind – with no particular unity, the redder being the
highest.

Path planning

The path planning process defines paths that maximize the information gain within a specified area
of interest while minimizing the energy consumption. It is a multi-criteria optimization problem that
blends criteria related to energy, information gain and region of interest.

1Centre National de Recherches Météorologiques – Groupe d’étude de l’Atmosphère Météorologique
2Institut Supérieur de l’Aéronautique et de l’Espace
3Office National d’Etudes et de Recherches Aérospatiales
4École Nationale de l’Aviation Civile
5Laboratoire d’Analyse et d’Architecture des Systèmes – Centre National de la Recherche Scientifique
6Other variables such as temperature, pressure or liquid water content are relevant for the atmosphere scientists – however in

this work we focus on winds, as it conditions the flight possibilities of the drones

3

The current solution is a centralized approach: computations are performed on a single ground
station connected to all the UAVs (no communication constraints are considered). UAVs have indeed a
low on-board computation power, and the only data that have to be exchanged with the ground station
are scalar sensor data gathered at a few Hz, and trajectories once every few seconds.

As for aircraft dynamics, we suppose constant airspeed, limited turn radius and perfect guidance.

The overall planning happens in two stages: Task allocation at a coarse level and for each drone, an
optimal path generation. Task allocation is under the control of the operator, who defines the utility of
zones and allocate drones to those areas. Then the real path path planning process occurs. The algorithm
plans trajectories using forward simulation taking in account the optimization criteria and the restrictions
on UAV motions. The forward simulation is done using a basic fixed-wing aircraft model that only does
banked turns. In this part, the optimization takes place in two steps: First, a blind random search of
feasible paths is achieved at a finite, short, horizon (about 20 seconds): this generates a set of trajectories.
The best one is selected, and then optimized with Simultaneous Perturbation Stochastic Approximation
(SPSA) optimization algorithm.

1.3 Motivations

Mapping and path planning libraries have provided interesting results in a realistic simulated atmo-
sphere (See Figure 1.4). Only the quality of the mapping algorithm were tested assuming the UAV can
perform perfectly the predicted path. This means that the tests were not taking into account the actual
behavior of a real UAV. Besides, no realistic flight dynamics simulator was included, and so the software
library was not yet engineered to work with actual flight simulators.

So it is necessary to define a new software architecture allowing the integration of the previous
work (on mapping and path planning) and flight simulators, in order to point out and identify possible
weaknesses in the system. The architecture should be defined with the goal of being able to make as easy
as possible the later transition into real tests with UAVs. It also seems important to assess the validity of
the assumptions made by the path planner regarding the forward simulator UAV model.

x (m)

2050

2100

2150

2200

2250

2300 y (m)2100
2200

2300
2400

z
(m
)

800

850

900

950

1000

−1.6

−0.8

0.0

0.8

1.6

2.4

3.2

4.0

Figure 1.4: UAV trajectory produced by the mapping and path planning library with realistic wind
environment. Red represents updraft and blue downdraft

1.4 Objectives

According to the motivations previously introduced, the goals of this internship are:

4

• Integrate the cloud mapping and cloud exploration algorithms within a more realistic environment

• Test the whole simulation loop in order to identify possible weaknesses of the algorithms

• Propose enhancements to the system

Later on the work, thanks to the implementation of the new simulation loop, some issues were
detected. So some enhancement proposals were included as new objectives:

• Research about better guidance algorithms

• Implement some of them to have a deeper knowledge of the system issues

1.5 Requirements

In order to fulfill the objectives, a new software architecture for the SkyScanner project is proposed. It
should be able to:

• Integrate the project’s previous work

• Be prepared to handle a fleet of aircrafts

• Seamless transfer the algorithms to the real implementation

• Allow space to include the enhancements and new functionalities.

1.6 Report outline

On Chapter 2 the new software architecture that integrates the simulations and the developed map-
ping and exploring algorithms is presented, and its operation is detailed. Some results obtained with the
whole architecture are presented.

Then, Chapter 3 comprehensively analyzes the guidance and navigation algorithms for fixed-wing
UAVs. State of the art guidance algorithms are compared and enhancements are proposed.

Finally, Chapter 4 summarizes the main results and presents further work.

5

Chapter 2

Simulation Architecture

2.1 Robot Operating System

Robot Operating System (ROS)1 is a software framework for robot software development. It provides
an operating system-like environment, libraries and tools for heterogeneous computer clusters. ROS
packages are composed of three distinct architectural elements: nodes, topics and services.

Nodes are were processing take place, like a process in a regular operating system. Nodes work
together in a graph environment and communicate with others by streaming messages in topics, doing
remote procedure calls to services, and getting and setting values in the parameter server. Nodes should be
designed to do fine-grained task and then communicate with others to perform more complex tasks. The
use of nodes reduces code complexity as the elements work isolated, only exposing the minimum amount
of information to operate with others. Moreover, nodes written in distinct programming languages can
coexist.

Topics are named buses over which nodes exchange messages. Topics are the way ROS decouples
the production of information from its consumption. Nodes can anonymously publish and subscribe to
them without being aware of who they are communicating with. Instead, nodes publish to the relevant
topic and subscribe to those they are interested in. Topics define a many-to-many relationship where
there could be multiple publishers and subscribers to a same one. Despite the link freedom, a topic is
defined by a unique message type, assuring that only the right type of information will be exchanged.

Services are another communication paradigm. Instead of a many-to-many publisher/subscriber
mechanism, it introduces request/reply interactions. A client calls the service and stays awaiting the
answer. Services are provided by topics and defined as two topic-like messages, one for the call and the
other for the answer.

There is also a fourth component, the parameter server. It is a multi-variate dictionary accessible
globally so nodes and inspection tools can view and modify it. The parameter server is not designed for
performance, but for static data such as configuration settings.

All four core components can be relocated to run in namespaces which are prepended to names and
provide a hierarchical naming structure.

2.2 Time management

Most ROS nodes in the package must be synchronized so that the simulated aircrafts, the path
planning and mapping algorithms share timely consistent data. ROS client libraries use by default the
computer’s system clock, known as “wall-clock” but this can be changed by publishing time into the
/clock topic.

1http://wiki.ros.org/

6

In order to fine control simulation execution sometimes it is useful to be able to change the speed of
time, usually to speed it up. SkyScanner’s ROS package includes a node /clock_generator that handles
ROS time (Figure 2.1). It sets the ROS clock by publishing the wall-clock multiplied by a constant into
/clock, so ROS sees time faster or slower than the computer. In order to be able to set a custom time, the
parameter use_sim_time must be set in the parameter server.

Using the ROS clock two timing messages are sent to nodes in topics:

• /tick running at 1 Hz, data gathering frequency

• /fast_tick running at 50 Hz, for deeper control loops

Then, there is the /clock_control topic that accept /ClockControl messages. Those control
messages allow to hold the clock when some debugging is necessary.

Figure 2.1: Clock generation node and related topics

2.3 Path planning and mapping

The path planner and mapping module is in charge of obtaining an estimated wind map given
some measurements using a Gaussian Process, and at the same time, generating an optimal path to
perform the mapping. The path planner selects a continuous track composed of circle arcs, feasible by
the simplified model of a virtual fixed-wing UAV. Those arcs come as result of doing banked turns. Among
a set of evaluated trajectories, the path planner picks the optimal path, taking into account some quality
measures regarding energy consumption, information gathered and respect of exploration bounds.

This library was developed in former stages of the SkyScanner project and has been already used to
obtain preliminary results. However it was not designed to work in a time managed environment, nor to
communicate with realistic simulators: further architectural improvements were needed.

At each tick the module receives the position of every UAV and their wind measurement. The library
updates the mapping according to these new data. As path generation takes noticeable time, some time
management is needed and the process operates at a slower rate. The loop works as shown in Figure 2.2
for every drone in the fleet.

planning phase

execution phase

t0 t0+Δtp t0+2Δtp

plan n+1

plan n plan n+1

plan n+2

t0
t0+Δtp t0+2Δtp

execution
planning

Figure 2.2: Planning chronogram

7

While a plan is being executed, the next one is being created. At the beginning of each cycle, e.g. t = t0,
the states of planner’s virtual UAVs are updated to the expected position at t0 +∆tp , where ∆tp is the
planner’s cycle period. This time is actually the fraction of the planning that is executed. Then, a new
plan for the next period is generated from this base position.

Planning time depends on the desired optimization level and is not bounded formally, but it is limited
in practice. On the development computer, a 10 second horizon was a sufficient time span in order to
have time to plan while not being too large – in which case the map is not reliable.

Figure 2.3 presents all input and output topics related to pathplanner node. From each aircraft
namespace it takes position and wind measurements, then it does the processing synchronously with
/tick messages. After that, the library gives two types of output: a set of commands for the plane, turn
radius and propulsion power; and a sequence of expected states, position and attitude, which forms the
track. Then, using both outputs, the path planning node forms a trajectory expressed as mathematical
functions. Circles are converted to straight segments for radius over some threshold. Indeed most
guidance algorithms perform better for lines and bigger circles can be approximated by segments without
too much error.

Figure 2.3: Path planner ROS graph

Hyperparameters optimization

The mapping algorithm models the atmosphere through a Gaussian Process and its prediction can
be improved by adapting the process hyperparameters. Figure 2.4 shows the gpr_optimizer node which
recalculates them at each new wind sample from any aircraft. Then it sends the result to the path planner
node so it can update the values and profit from the optimization.

Figure 2.4: GP optimizer ROS graph

8

2.4 Interface with simulation backends

One of the requirements of the software integration is to be modular. In other words, the functionality
of the whole software architecture must be separated into independent modules such that each one
implements one task. They may be separated, recombined or replaced affecting minimally to the rest of
elements.

First, the path search simulator, the one that the path planner uses to generate tracks, was integrated.
It is being used to validate the planner behavior.

Then, an interface with Paparazzi was developed. At this stage of the project, we are using simulated
planes with the JSBSim library.

Finally, communication with the free flight simulator FlightGear was written to overcome some
limitations in paparazzi that are introduced later in this report.

On the other hand, the data from MesoNH atmospheric simulator is used together with flight simula-
tors in order to provide a realistic meteorological environment.

Path search simulator

The planning algorithm needs to look ahead to generate some path according to the restrictions.
There is a simple aircraft model in the algorithm that is used to generate trajectories according to the
expected characteristics of the real UAVs. The user has to provide the model parameters according to the
actual UAV, and the path planner creates a feasible trajectory given this model and the estimated map.

Figure 2.5: Path search simulator (simuav) ROS graph

This sui generis simulator has been also implemented as an external simulator, with the purpose to
assess the quality of the mapping algorithm used in planning. As shown in the ROS graph of Figure 2.5 the
virtual aircraft, represented as the simuav node, takes the low level aircraft commands as inputs. Without
any kind of guidance stage, this means that if the mapping is doing a good work, the resulting UAV state
should be the same as the expected UAV state by the planning. Differences between the actual position
and the expectation are due to mapping not matching the real wind.

MesoNH

The CNRM-Game research group, using the in-house developped MesoNH simulator2, has provided
realistic simulated data of cloud microphysics in a cumulus generation scenario at fair weather conditions.
This simulation includes information about three dimensional wind, pressure, humidity, temperature
and liquid water content, which defines the presence or not of a cloud.

2http://mesonh.aero.obs-mip.fr

9

As wind is the atmospheric variable that significantly affects the flight, it is the only one introduced into
the ROS architecture loop. In fact, Paparazzi does not allow introducing other meteorological parameter
but wind speed. However, SkyScanner aims to include in the future the rest of the atmospheric variables
in the process, but only for cloud mapping purposes – they will not influence the flights generation or
exectution.

Let’s introduce the atmosphere ROS node, which is running the /get_wind service. This service
queries wind speed from MesoNH off-line simulated data, stored in a network drive. Then, there are
other topics, paparazzienvironment and flightgearenvironment which are in charge of setting the wind.
As shown in 2.6, they provide position and time to atmosphere and put the corresponding wind speed
into the simulation. Other flight simulators could be included following the same procedure.

atmosphere

flightgear
environment

FlightGearReal
wind

Position
Time

paparazzi
environment

PaparazziReal
wind

Position
Time

/get_wind
service

...

/get_wind
service

/get_wind
service

MesoNH
data

Figure 2.6: Interface between MesoNH data and flight simulators

Paparazzi

Communication between UAVs and Paparazzi ground control software are made through the Ivy
bus protocol. Involved systems put on the bus messages that are broadcasted along the channel. Then,
subscribers filter the information they are interested in by using regular expressions. Each paparazzi
aircraft sends periodical telemetry messages with its position, attitude, energy consumption and task
execution status (among others). The ground control station or other custom software can subscribe to
these messages and put back on the up-link bus commands for the planes.

paparazziuav

Ivy bus

ROS topics

paparazzi
environment Paparazzi

SkyScanner
ROS package

Real
wind

Position

Position / Attitude
Wind measurement
Energy consumption

Task

atmosphere

Position / Attitude
Wind measurement
Energy consumptionTask

UDP

/get_wind
service

Figure 2.7: Interface scheme between Paparazzi and SkyScanner ROS package

10

Figure 2.8: ROS graph of paparazziuav

The SkyScanner ROS package communicates with the Ivy bus and exposes the data we are interested
in into ROS topics. Paparazzi puts on the bus all the messages received from the planes’ telemetry link.
This includes position, attitude and energy consumption which are the ones the paparazziuav reads. As
information from all aircrafts is in the same channel, each node filters the ones that matches the aircraft
id. Figure 2.8 shows the ROS graph of a paparazziuav node and related topics.

On the other hand, paparazziuav puts task messages which can be waypoint, circle, segment and path.
Despite the variety of trajectory shapes, the possibilities are quite reduced: Path tasks are just a sequence
of five segments at constant altitude and circle tasks are not chained one after other automatically. Even
worse, paparazzi uses the carrot-chasing algorithm as guidance. This path following method is suitable
for tracking circular and linear trajectories that are steady, but it doesn’t perform well for dynamical ones
like those produced by the SkyScanner’s path planner.

As a sequence of circles cannot be used as trajectory by paparazzi, and after testing with waypoints,
segments an paths, it was the segment task the one that performed the best. So paparazziuav sends
sequences of straight lines to paparazzi, but the results weren’t satisfactory.

Figure 2.9 shows a simulated easystar UAV in paparazzi trying to track the generated path. The
minimum radius was forced to 100m to plan the trajectories, and wind effects were deactivated. Even
with these conditions, the plane is not able to keep the track and it can be readily stated just with a quick
look that the result is not satisfactory.

−400 −300 −200 −100 0 100 200 300 400
X position [m]

−200

−100

0

100

200

300

400

500

Y
po

si
tio

n
[m

]

UAV position (Rmin=100m, no wind)

Performed
Planned

(a) Horizontal projection

02:00 03:00 04:00 05:00 06:00
Time [m:s]

0

200

400

600

800

1000

AG
L

[m
]

UAV AGL (Rmin=100m, no wind)

AGL
Expected AGL

(b) Vertical profile

Figure 2.9: Planned and performed trajectory of an easystar UAV in paparazzi’s simulator without wind

11

02:00 03:00 04:00 05:00 06:00
Time [m:s]

0

50

100

150

200

250

Cr
os

st
ra

ck
 e

rro
r [

m
]

UAV crosstrack error (Rmin=100m, no wind)

Crosstrack error
Mean crosstrack error

(a) Instantaneous cross-track error

Max [m] Mean [m] Min [m] σ C F =σ/x̄

213 56 0 46.65 0.83

(b) Statistics after a 5 minutes flight

Figure 2.10: Cross-track error of trajectory in Figure 2.9

A quantitative analysis of the ability to follow the track is done using the crosstrack error as perfomance
measure, defined as the distance between UAV’s position and the expected trajectory. Figure 2.10 shows
the crosstrack error of the trajectory in Figure 2.9. Table 2.10b proves the weak ability to track the path:
even if the mean error seems not to big, taking in account that the expected path is going around an area
of 400 by 400 meters, it is significant. The coefficient of variation (CF) is almost 1, the aircraft is almost
acting erratically.

Looking at those unsuccessful results made us realize that more research was needed in order to
achieve at SkyScanner’s objective. Either Paparazzi may not be the best option to guide the aircraft or the
paths are not feasible for the plane. As the UAV is able to follow a stationary circumference of the same
radius, we supposed that the main problem is in Paparazzi’s guidance system which it is not able to track
at the required rate. At the same time we cannot forget that Paparazzi autopilot does not allow chaining
circles and the are being substituted by small segments.

FlightGear

Due to problems regarding guidance in Paparazzi, we decided to explore other options and try to
implement a back-end for a different flight simulator. FlightGear was chosen for several reasons. First, it
can use JSBSim as Flight Dynamic Model library, the same one as Paparazzi. In fact JSBSim was developed
specifically for FlightGear in mind. Second, it is easy to find aircraft models for it. Third, most simulation
parameters, commands and states can be controlled externally with remote protocols. Finally, it is open
source software so it can be installed on every computer without restriction, and the implemented code
can be inspected.

Flight Gear simulation state, inputs, outputs and settings are organized as a tree where they are
categorized. Every value can be read and modified from the program itself or external software. Com-
munication between FlightGear and other software can be achieved by several means: UDP, TCP, HTTP
or Telnet. HTTP and Telnet servers in FlightGear have a slow update rate of the values, but they have
the advantage of being easy to use. HTTP allows to show data in a web browser and Telnet provides the
capability of monitoring and changing values through the command line using client software available
in all operating systems. On the other hand, communication can happen at faster rate using UDP and
TCP. However, the way to send and receive information is more strict. It is necessary to define which
information is going to be sent and received in a XML file, that is loaded when launching FlightGear.

12

As data transfer between FlightGear and the SkyScanner ROS package should happen at 50 Hz at least
(recall the frequencies of operation in Section 2.2), HTTP and Telnet protocols proved to be insufficient.
UDP was chosen as protocol over TCP because it is stateless. In UDP there is no connection to maintain,
only messages being sent or received, so communication is more robust facing interruptions.

flightgearuav

ROS topics

flightgear
environment

FlightGear

Real
wind

Position
Time

Position
Attitude

Speed

Target heading
Target AGL

/get_wind
service

Wind

Autopilot activation

atmosphere

Figure 2.11: Interface scheme between FlightGear and SkyScanner ROS package

Values shown as dashed lines in Figure 2.11 correspond to the ones sent by UDP. Going into details,
each line corresponds with a socket: position, attitude and speed are received together at /fast_tick
frequency; then, the heading and height above ground level (AGL) setpoints in another socket at the same
frequency and finally, wind is sent and measured back in two different channels running at 1 Hz. Wind
injection can be deactivated if we want to use Flight Gear’s atmospheric models.

Other control messages that are not sent evenly but arbitrarily, like autopilot activation or deactivation,
are transmitted using Telnet as they don’t have to be defined in the XML files at launch time. They are
shown as dotted lines in Figure 2.11.

Furthermore, let’s point out an important difference between Paparazzi and FlightGear interfaces.
The former sends command to UAVs in tasks defined by geometrical curves like segments or circles,
but the latter sets a target heading and a target AGL. That is due to the fact that Paparazzi is a whole
autonomous flight control system and FlightGear just a flight simulator. This means that to use FlightGear
we need to introduce a guidance node which translates geometrical trajectories into heading and AGL
setpoints. An overview of this node is provided here but it is explained in detail later in Chapter 3.

Figure 2.12: guidance node ROS graph

The guidance takes the mathematical expression of trajectories and the actual position of the aircraft
and compute the estimated heading that will lead the UAV to the right path. At a first stage it determines
which part of the track to follow, that is, switch between circles and segments following some criteria
(temporal mainly). Later it calculates some heading according to the guidance algorithm applied to
the current piece of path. AGL setpoint is directly taken from the expected position, leaving the task of
tracking it to FlightGear, which is able to do so.

13

2.5 Execution loop

The fact that until this point and through this report most of the time only one UAV is considered, is
just for the sake of simplicity of figures and explanations. As stated in Requirements section of Chapter 1,
the upcoming simulation architecture should be able to manage several aircrafts, which os actually
possible with the SkyScanner ROS package (See Figure 2.13). Any (reasonable) number of UAVs can be
launched within the simulation, allowing each one to have their own set of parameters, and without
changing anything of their structure. Every aircraft defined to be launched runs in a different namespace.
Involved nodes, topics and parameters are prepended by an aircraft code so no conflict is present.
Common nodes like paparazziuav or paparazzienvironment nodes run on their own namespace but they
read and put messages of aircrafts on their namespaces.

Figure 2.14 shows the whole ROS architecture for two different flight simulation backends. They are
running one aircraft in the ac_1 namespace. This name can be whatever sequence accepted by ROS. In
this particular case, ac_1 was chosen because when using the Paparazzi back-end, it is mandatory to
define the aircraft id of the plane to appropriately filter the messages in the ivy bus. On the other hand, in
the FlightGear case no special id is required but to set the hostname and ports of the UDP sockets. The
namespace schema permits also to have isolated parameter sets.

The system could work with aircrafts running in different flight simulator backends. Even if this
doesn’t have any special utility for us at the moment, it shows how the new architecture is modular and
adaptable to distinct situations.

−400 −300 −200 −100 0 100 200 300 400
X position [m]

−300

−200

−100

0

100

200

300

400

Y
po

si
tio

n
[m

]

2 UAV trajectories

ac_1 trajectory
ac_2 trajectory

Figure 2.13: Trajectories of two aircrafts simultaneous simulation

14

(a
)P

ap
ar

az
zi

R
O

S
gr

ap
h

(b
)F

li
gh

tG
ea

r
R

O
S

gr
ap

h

Fi
gu

re
2.

14
:R

O
S

gr
ap

h
o

ft
h

e
co

m
p

le
te

ex
ec

u
ti

o
n

lo
o

p
u

si
n

g
tw

o
fl

ig
h

ts
im

u
la

ti
o

n
b

ac
ke

n
d

s

15

Chapter 3

UAV Navigation and Guidance

Flight plan Segment
Circumference...

Navigation Vz, ψd

Guidance T, θ, ψ

Stabilization T, φ, θ, ψ

Actuation M1, M1...

Aircraft

Paparazzi

FDM

(a) Paparazzi

Flight plan Segment
Circumference...

Navigation Vz, ψd

Guidance T, θ, ψ

Stabilization T, φ, θ, ψ

Actuation M1, M1...

Aircraft

FlightGear

FDM

(b) FlightGear

Figure 3.1: Control layers of autonomous aerial vehicles

The guidance or path-following problem is to determine the heading angle that accurately tracks a
given path. Figure 3.2 shows the schema of circumference tracking: the distance d is the cross-track error,
ψ is the actual heading of the UAV and θd is the direction of the line-of-sight (LOS), the trace of the path.
Then, the objective of path-following is to minimize the heading error and the cross-track error, in other
words, to make |θd −ψ|→ 0 and |d |→ 0 for t →∞.

d

r

va
ψ

θ

θd

Figure 3.2: Guidance problem definition for circumference path.

16

There are multiple well-known solutions for the guidance problem in steady two-dimensional paths,
but as the SkyScanner’s path planner proposes highly dynamical 3D trajectories we must analyze which
algorithms is adapted for the desired performance requirements, to detect flaws on those algorithms or
on path generation and to propose improvements to both if possible.

Some path-following algorithm types, used widely by UAV autopilots, are compared in [2] but those
are studied only for tracks at constant altitude as 3D guidance is still a challenge. There are some works on
three dimensional approaches like in [3] where a sliding-mode guidance system is proposed for constant
speed missile-like vehicles; or [4] which introduces a 3D extension for some constrained optimal guidance
laws. But they have limited applications, so there is still much work to do in order to find generic and
robust algorithms.

The usual approach to overcome the limitation to 2D guidance, is to decouple horizontal and vertical
displacements [5]. This assumption is completely valid for steady tracks and it is applied to all generic
autopilot systems. However it may be not valid because of the type of paths we are dealing with.

For the tests made with FlightGear we used the malolo 1 UAV model which is the closest model we
have found to the one used in Paparazzi (easystar). Despite they have similar size, the malolo 1 is heavier,
8 kg, compared to the weight of the easystar, 1 kg. This affects mainly the turn radius when flying so
performance cannot be compared directly. But it can give an insight into the effects of the guidance stage
in the whole command loop.

3.1 Navigation

Navigation corresponds to the second top layer in Figure 3.1. It translates definitions of tracks into a
target heading, the line-of-sight, and target vertical speed to feed the guidance.

The algorithm depends on the type of curve: waypoint, straight line, circumference. . . For waypoints
the heading setpoint is the angle that forms the line going from the UAV to the target. In the case of
straight lines, the heading is the orientation of the path which is a step input for the guidance loop.

For other curves, the target heading is the derivative of the curve at the closest point to the aircraft. It
requires calculating the minimum distance from a point to a curve, which requires solving an equation
for any non-trivial situation. The equation may not have an explicit solution and require the use of
root-finding algorithms. Hopefully, it is still easy to solve it for circumferences: the heading setpoint is
perpendicular to the segment that joins the center and the aircraft. From the guidance algorithm point of
view, it consists in following a ramp function with a slope depending on circle radius.

3.2 Stabilization

Under the guidance layer, stabilization takes a heading setpoint and commands the actuators. Head-
ing change is performed doing a banked turn, in which the aircraft inclines towards the inside of the
turn. In FlightGear this control layer is implemented as a 2-stage cascade PID controller, as shown in
Figure 3.3. The inner loop controls the aircraft roll, ϕ, changing aileron position. The outer loop sets the
roll to handle the heading ψ. ϕ is limited to ±20 degrees.

-

+
PID

Aileron

-

+ψd φd
PID Aircraft

φ
ψ

Figure 3.3: Aircraft stabilization control loop scheme.

Figure 3.4 shows the response of the stabilization control loop to a 90 degree step response. We can
notice a first-order response superposed by a small ripple, caused by the most internal control loop, and
a 1 second time delay with negative overshoot.

The settling time for 95 % of the setpoint is 13 seconds. If the UAV flies at 15 m/s, this means that it
will perform an arc of 195 m while this period of time. As the step goes from zero to 90 degrees, we can
say that the minimum turn radius it can perform is around 125 meters.

17

03:25 03:30 03:35 03:40 03:45 03:50 03:55 04:00
Time [m:s]

0.0

0.2

0.4

0.6

0.8

He
ad

in
g

[r
ad

]

Heading control loop step response

Set point
Actual heading

Figure 3.4: Heading stabilization step response for a malolo 1 UAV.

3.3 Carrot-chasing guidance

The carrot-chasing guidance algorithm introduces a Virtual Target Point (VTP) that must be followed
by the UAV. Like a donkey follows a carrot attached to a stick, the UAV updates it’s heading to pursuit the
VTP which moves ahead over the path at a fixed distance. This is the guidance algorithm included in
Paparazzi and therefore the first one it has been used by the SkyScanner project.

The performance of the carrot-chasing algorithm depends on the VTP distance to the UAV. For short
distances the vehicle cannot track the trajectory as it moves straight to it, resulting in overpassing and
making a sinusoidal trajectory along the track. For greater carrot distances, the UAV converges to a
straight line path. Having a larger distance to the carrot prevents the aircraft to overpass the path but
increases the settling time.

For circles, as for segments, a short carrot distance causes the UAV to follow a sinusoidal path along it.
Increasing it makes the trajectory converge but unlike lines, a too big value provokes the UAV to travel
around the circle without never reaching it (See Figure 3.5). Values considered small or big depend greatly
on the radius of the circle and the aircraft following it. In Paparazzi, the VTP is measured in units of time.
As it presumes constant speed it is considered equivalent.

−100 −50 0 50 100 150 200
X position [m]

−50

0

50

100

150

200

250

Y
po

si
tio

n
[m

]

Circle path tracking with carrot-chasing algorithm

VTP at 1s
VTP at 10s
VTP at 15s

Figure 3.5: Circumference tracking comparison for different Virtual Target Point distances.

18

−100 −50 0 50 100 150 200
X position [m]

−50

0

50

100

150

200

250

Y
po

si
tio

n
[m

]

Circle tracking with carrot-chasing algorithm
(Wind east at 7.5 m/s)

Performed trajectory

Figure 3.6: Circumference tracking with constant 7.5 m/s east component wind.

−100 −50 0 50 100 150 200
X position [m]

−50

0

50

100

150

200

250

Y
po

si
tio

n
[m

]

Circle tracking with carrot-chasing algorithm
(MesoNH wind)

Performed trajectory

(a) UAV trajectory

02:00 03:00
Time [m:s]

−4

−3

−2

−1

0

1

2

3

4

W
in

d
sp

ee
d

[m
/s

]

Measured wind

East
North
Up

(b) Wind speed components

Figure 3.7: Planned and performed trajectory of an easystar UAV in paparazzi’s simulator without wind

Introducing wind into the environment means putting a disturbance to the system and when it is
present, the constant speed presumption no longer applies. In Figure 3.6 the UAV goes faster when
moving in the same orientation of wind and slower when moving facing it. This results in not performing
a circle as planned. When applying realistic wind, with smaller magnitude, it doesn’t affect too much to
the trajectory. We only observe a minimum displacement in south-west direction.

The carrot chasing algorithm usually performs the worst among state-of-the-art guidance laws in
terms of robustness to external disturbances [2]. Some wind compensation algorithms are proposed in
the literature such as wind estimation through a model[6] or changing the VTP distance according to a
fuzzy logic algorithm[7], but they cannot compete with other algorithms applying the same provision.

3.4 Pure pursuit and LOS guidance

Another geometric method is the pure pursuit and line-of-sight (PLOS) guidance algorithm, which is
a combination of two guidance laws. The pure pursuit law drives the aircraft to the destination and the
LOS guidance steers it toward the line-of-sight.

19

The pure pursuit guidance law is given by:

ψp = kp (θd −ψ) (3.1)

On the other hand, the LOS guidance law is:

ψl = kl d (3.2)

A linear combination of Equation 3.1 and Equation 3.2 makes the UAV follow the path:

ψd = kp (θd −ψ)+kl d (3.3)

As stated in [2], the PLOS guidance law is stable for every kp > 0 and kl > 0 and should have less
crosstrack error compared to the carrot-chasing algorithm.

−300 −200 −100 0 100 200 300
X position [m]

−300

−200

−100

0

100

200

300

Y
po

si
tio

n
[m

]

UAV position

Performed
Planned

(a) Horizontal guidance. kp = 100, kl = 3.

03:00 04:00 05:00 06:00 07:00
Time [m:s]

0

200

400

600

800

1000
AG

L
[m

]

UAV AGL

AGL
Expected AGL

(b) Vertical profile

Figure 3.8: Planned and performed trajectory of a malolo 1 UAV in FlightGear simulator with realistic
MesoNH wind and PLOS guidance.

It can be seen in Figure 3.8 that the path is being tracked better than with Paparazzi’s guidance in
Figure 2.9 but sometimes it gets lost. Altitude is not being tracked at all, the reason may be decoupling
the horizontal and vertical movement is not valid. However we suspect some issues in the aircraft model
as height above ground level is almost not reacting to changes in altitude setpoint.

Regarding the crosstrack error, Figure 3.9 its mean value is similar to the one obtained with paparazzi
and introduced in Figure 2.10. However we notice half of the time the crosstrack error is quite low while
in the other half it is much bigger. In addition, the error function is not continuous (there are big jumps
around minute 07 : 00). An in depth look at this situation made us realize that this is due to two reasons:
first, in Figure 3.10 we can see the airspeed is not constant and it can vary from 14,5 m/s to 19,5 m/s.
Second, transitions between pieces of track are not smooth from the point of view of guidance. The path
is continuous, but the parameters defining, turn radius and circumference center, are not.

3.5 Vector field guidance

Another approach to guidance are vector field (VF) guidance laws. Vector fields are potential functions
which minimum lies on the desired path. For each point in space there is an associated guidance vector
which guides the aircraft to path. If the UAV is able to follow the orientations of the vector, it arrives to the
track. The stability of these algorithms is assured by Lyapunov stability criteria.

20

03:00 04:00 05:00 06:00 07:00
Time [m:s]

0

50

100

150

200

250

300

Cr
os

st
ra

ck
 e

rro
r [

m
]

UAV crosstrack error

Crosstrack error
Mean crosstrack error

(a) Instantaneous cross-track error

Max [m] Mean [m] Min [m] σ C F =σ/x̄

259 50.7 0 68.421433 1.348393

(b) Statistics after 5 minute flight

Figure 3.9: Cross-track error of trajectory in Figure 3.8

03:00 04:00 05:00 06:00 07:00
Time [m:s]

14

15

16

17

18

19

20

Ai
rs

pe
ed

 [m
]

UAV Airspeed

Airspeed
Mean airspeed

Figure 3.10: Measured airspeed during the flight of Figure 3.8.

The following algorithm [8] is currently being implemented in Paparazzi by the people of ENAC, but
we have used it with FlightGear. This control law is designed to command a vehicle in speed. However,
FlightGear’s autopilot doesn’t allow to control aircraft’s heading rate of change. So it has been adapted,
with the help of one of its authors, to give the heading as output.

Let’s define a path P ⊂R2 described implicitly by:

P = {(x, y) : ϕ(x, y) = 0} (3.4)

Where ϕ : R2 →R is C 2-smooth and in some vicinity of P one has

∇ϕ(x, y) 6= 0 (3.5)

21

Figure 3.11: Geometrical definitions of vector field algorithm mathematical components.

As illustrated in Figure 3.11 the whole plane R2 is covered with sets of ϕ(x, y) = c . At any point (x∗, y∗)
where Equation 3.5 holds, n̄(x∗, y∗) =∇ϕ(x∗, y∗) is a normal vector to the path and the unit tangent vector
τ̄ is chosen as the basis [τ̄, n̄] is orthonormal.

Instead of defining an euclidean distance to the path, we consider the tracking error

e =ψ[ϕ(x, y)] ∈R (3.6)

where ψ : R→R strictly increasing, differentiable with ψ(0) = 0.

The goal is to design a control law that eliminates this tracking error. We introduce the potential
function

V (x, y) = 1

2
e2(x, y) (3.7)

Its derivative regarding the kinematic constraints of the UAV is

V̇ (x, y) = e(x, y)ψ′(ϕ(x, y))∇ϕ(x, y)ᵀ (3.8)

The V function is decreasing, so |e| too, provided en̄ᵀm̄ < 0. Since the UAV must also move at the
direction of the path LOS, m̄ ≈ τ̄

||τ̄|| . At the same time it should be orientated in a way the tracking error is
reduced. So the vector field v̄ is given by

v̄(x, y) = τ̄(x, y)−kne(x, y)n̄(x, y) (3.9)

The guiding vector field, the desired orientation, is hence

m̄d = v̄

||v̄ || ∀v̄(x, y) 6= 0 (3.10)

After testing the vector field guidance algorithm (see Figures 3.12 and 3.13), we faced similar issues as
with PLOS guidance. Most of the time the UAV stayed close to the path but a few times it got lost, greatly
increasing the error. In addition, the airspeed assumption didn’t hold this time (Figure 3.14).

22

−150 −100 −50 0 50 100 150 200 250
X position [m]

−200

−150

−100

−50

0

50

100

150

200

250

Y
po

si
tio

n
[m

]

UAV position

Performed
Planned

(a) Horizontal guidance. kn = 6 ·10−5

09:00 10:00 11:00 12:00 13:00
Time [m:s]

0

200

400

600

800

1000

AG
L

[m
]

UAV AGL

AGL
Expected AGL

(b) Vertical profile

Figure 3.12: Planned and performed trajectory of a malolo 1 UAV in FlightGear simulator with VF
guidance.

09:00 10:00 11:00 12:00 13:00
Time [m:s]

0

20

40

60

80

100

120

140

Cr
os

st
ra

ck
 e

rro
r [

m
]

UAV crosstrack error

Crosstrack error
Mean crosstrack error

(a) Instantaneous cross-track error

Max [m] Mean [m] Min [m] σ C F =σ/x̄

124 17.8 0 25.9 1.45

(b) Statistics after 5 minute flight

Figure 3.13: Cross-track error of trajectory in Figure 3.12

23

09:00 10:00 11:00 12:00 13:00
Time [m:s]

11

12

13

14

15

16

17

Ai
rs

pe
ed

 [m
]

UAV Airspeed

Airspeed
Mean airspeed

Figure 3.14: Measured airspeed during the flight of Figure 3.12.

24

Chapter 4

Conclusion and future work

In previous chapters we have introduced the mission of the SkyScanner project. Then, we explained
the previous effort on mapping and path planning and how these algorithms work. We justified the need
of a new software architecture that could help validate the behaviour of the algorithms.

A new software package, based on the Robot Operating System (ROS), has been implemented and
deployed. It integrates several realistic simulators: Paparazzi and FlightGear as flight simulators, and
MesoNH to gather atmospheric data. The software architecture was designed with modularity in mind
and the easy of transitioning to the operation with real UAVs.

The software integration allowed to identify that Paparazzi cannot make the UAVs follow the tracks
provided by the path planner. This is due to problems with the guidance algorithm (Carrot-chasing) and
the navigation module, which wasn’t designed to handle these types of tracks.

Because of the issues, a new objective was added to the internship. In order to solve the problems, we
did a survey about different guidance algorithms with their advantages and weaknesses. After that, we
implemented two of them (PLOS and Vector Field), and we added communication with the FlightGear
simulator. This showed us that there are guidance algorithms that perform better than the Carrot-chasing.
However, there where still problems with path-following: we identified that the generated paths are not
totally feasible by real UAVs.

As a consequence, for the remaining of the internship, we are exploring other types of curves for
the planning process, that should be more easily tracked. Fir this purpose, we will exploit the insights
about guidance that we have acquired by testing various solutions. Regarding Paparazzi, we are in close
contact with its developers, and they are now improving the guidance and navigation modules to be able
to handle more complex trajectories.

25

Appendix

Improvements to the ROS framework

The ROS framework provide some tools to inspect and supervise running ROS packages. The rqt
software is the graphical way to present this information and it works through plugins that bring the
functionality. There is a plugin to show relationships between nodes and topics (rqt_graph), another one
to inspect topics (rqt_topic) and some other one to plot numerical values of topic messages against time
(rqt_topic). However there is not any plugin to plot one message field against another, like when plotting
a trajectory, so it was required to develop a new plugin for this task.

Based on rqt_plot, an improved version named rqt_plotxy was implemented. It takes two. The
SkyScanner’s new software architecture use it amply to plot UAV trajectories. rqt_plotxy takes messages
from both topics and matches them in time, using the time stamp if a header is included or by reception
time otherwise.

A request to include rqt_plotxy in the default set of rqt plugins has been sent to ROS developers.

Statistics node

In order to have an online performance measure of the system, a statistics module has been included.
It is optional to run it and can be launched and stopped at any time.

The /stats ROS node takes, for each aircraft, the actual state and the expected state and trajectory. With
the first it calculates the error in altitude and with the second the crosstrack error. The crosstrack-error is
determined as the euclidean distance from the aircraft to the expected path.

Finally it publishes these performance measures in a /stats topic for each UAV, so it can get recorded
or processed by other topics.

26

Figure 1: Screenshot of rqt_plotxy

Figure 2: ROS graph of stats node

27

Bibliography

[1] A. Renzaglia, C. Reymann, and S. Lacroix, “Monitoring the Evolution of Clouds with UAVs”, presented
at the IEEE International Conference on Robotics and Automation, May 16, 2016. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-01275324/document (visited on Apr. 6, 2016).

[2] P. B. Sujit, S. Saripalli, and J. B. Sousa, “Unmanned Aerial Vehicle Path Following: A Survey and
Analysis of Algorithms for Fixed-Wing Unmanned Aerial Vehicless”, IEEE Control Systems, vol. 34,
no. 1, pp. 42–59, Feb. 2014, ISSN: 1066-033X. DOI: 10.1109/MCS.2013.2287568.

[3] J. Song and S. Song, “Three-dimensional guidance law based on adaptive integral sliding mode
control”, Chinese Journal of Aeronautics, vol. 29, no. 1, pp. 202–214, Feb. 2016, ISSN: 1000-9361.
DOI: 10.1016/j.cja.2015.12.012. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1000936115002411 (visited on Jun. 2, 2016).

[4] F. Tyan, “Unified approach to missile guidance laws: a 3D extension”, IEEE Transactions on Aerospace
and Electronic Systems, vol. 41, no. 4, pp. 1178–1199, Oct. 2005, ISSN: 0018-9251. DOI: 10.1109/TAES.
2005.1561882.

[5] T. I. Fossen, K. Y. Pettersen, and R. Galeazzi, “Line-of-Sight Path Following for Dubins Paths With
Adaptive Sideslip Compensation of Drift Forces”, IEEE Transactions on Control Systems Technology,
vol. 23, no. 2, pp. 820–827, Mar. 2015, ISSN: 1063-6536. DOI: 10.1109/TCST.2014.2338354.

[6] H. E. Núñez, G. Flores, and R. Lozano, “Robust path following using a small fixed-wing airplane for
aerial research”, in 2015 International Conference on Unmanned Aircraft Systems (ICUAS), Jun. 2015,
pp. 1270–1278. DOI: 10.1109/ICUAS.2015.7152420.

[7] S. A. H. Tabatabaei, A. Yousefi-koma, M. Ayati, and S. S. Mohtasebi, “Three dimensional fuzzy
carrot-chasing path following algorithm for fixed-wing vehicles”, in 2015 3rd RSI International
Conference on Robotics and Mechatronics (ICROM), Oct. 2015, pp. 784–788. DOI: 10.1109/ICRoM.
2015.7367882.

[8] Y. A. Kapitanyuk, A. V. ProskurnikovAnton V., and M. Cao, “A guiding vector field algorithm for path
following control of nonholonomic mobile robots”, 2016, submitted.

28

https://hal.archives-ouvertes.fr/hal-01275324/document
http://dx.doi.org/10.1109/MCS.2013.2287568
http://dx.doi.org/10.1016/j.cja.2015.12.012
http://www.sciencedirect.com/science/article/pii/S1000936115002411
http://www.sciencedirect.com/science/article/pii/S1000936115002411
http://dx.doi.org/10.1109/TAES.2005.1561882
http://dx.doi.org/10.1109/TAES.2005.1561882
http://dx.doi.org/10.1109/TCST.2014.2338354
http://dx.doi.org/10.1109/ICUAS.2015.7152420
http://dx.doi.org/10.1109/ICRoM.2015.7367882
http://dx.doi.org/10.1109/ICRoM.2015.7367882

	Contents
	List of Figures
	Introduction
	The SkyScanner project
	Previous work
	Motivations
	Objectives
	Requirements
	Report outline

	Simulation Architecture
	Robot Operating System
	Time management
	Path planning and mapping
	Interface with simulation backends
	Execution loop

	UAV Navigation and Guidance
	Navigation
	Stabilization
	Carrot-chasing guidance
	Pure pursuit and LOS guidance
	Vector field guidance

	Conclusion and future work
	Appendix
	Improvements to the ROS framework

	Bibliography

