

Dynamic RDS-on degradation analysis on power GaN HEMT by means of TCAD simulations and experimental measurement

Gaëtan Toulon¹, Cristina Miccoli², David Tremouilles³, Frédéric Morancho³, Maria-Eloisa Castagna², Alessandro Chini⁴, Ferdinando Iucolano²

¹STMicroelectronics, 51 Rue de l'Innovation, 31670 Labège, France

²STMicroelectronics, 95121 Catania, Italy

³LAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France

⁴Department of Engineering "Enzo Ferrari," Università di Modena e Reggio Emilia, 41125 Modena, Italy

Paper presented during WOCSDICE - EXMATEC conference (May 2023 - Palerme, Italy)

GaN HEMT widely adopted for power application thanks to:

✓ high critical electric field → high voltage
✓ high 2DEG mobility and concentration → low R_{DS-on}

However, GaN technology still present reliability issues:

✓ For high voltage Fe or C is mandatory to limit leakage current
→ creation of point defect traps related to these species
✓ Deep trap levels lead to current collapse effect → electrical performance degradation

Transistor technology under test

- D-mode power HEMT for 650V applications
- Carbon doped buffer on Si substrate 8 (inches)
- Three field plates design

life.augmentec

Experimental setup

N1267A High Voltage / High Current Fast Switch

- Characterizations performed with B1505 associated to the and semi automatic probing station
- Current collapse option (high voltage / high current fast switch) to monitor R_{DS-on} variation after a stress
- Test performed on power transistors for different conditions:
 - Stress time: 1min
 - V_{DS} (100 to 650V)
 - Temperatures between 80 and 120°C

Measurement results

- Stress voltage effect: Maximum of degradation for low V_{DS} (100-150V), with a decrease at higher voltage
- Center to edge effect: Stronger degradation in the center of the wafer
- Symmetry effect on wafer position: same degradation at left and right from center

Measurement results

life.augmented

- Test repeated at different temperature for the most stressful condition: 100V in the center of the wafer
- Main trap time constant extracted from derivative of R_{DS-on}
- Activation energy $E_A=0.88eV$: should be associated to carbon used in the epitaxy

ADG - Power & Discrete R&D – GaN Devices Group 4/29/2024 2:49:19 PM

6

Simulation conditions

- Mixed mode simulation
- Resistor value selected in order to limit the drain current to 1A (HEMT in linear mode)
- Pulsed source used for the gate with V_{qs-off} =-30V with very fast rise / fall time in the range of ns
- Buffer modelized by GaN associated to acceptors traps ($E_T=0.9-E_V$)
- Lower concentration of acceptors in the GaN channel, fully compensated by shallow donors
- General physical parameters:
 - Piezo-electric polarization based on Ambacher model
 - SRH recombination for traps
 - Mobility: temperature dependance due to phonon scattering & Canali for high field saturation

Impact of temperature – tests on new wafer

🖁 GaN 🖞

device ++

- Time constant dependent on trap cross section
- Same trends in terms of R_{DS-on} variation in simulation by adjusting the acceptor concentration
- Activation energy of ~0.9eV extracted from TCAD results

Conclusion

- Dynamic R_{DS-on} variation measured on D-mode HEMT for different condition highlighted the stronger degradation at low voltage
- Low voltage stress for different temperatures allowed us to extract an activation energy of 0.9eV that could be related to carbon
- TCAD simulation with traps of same activation energy in the GaN buffer could reproduce the same trend and allowed us to understand the electrical behavior
- Thanks to TCAD simulations, we could improve the transistor design to mitigate the R_{DS-on} degradation.

Our technology starts with You

© STMicroelectronics - All rights reserved. ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to <u>www.st.com/trademarks</u>. All other product or service names are the property of their respective owners.

