

Platform of Reliability tOOls for Failure analysis dedicated to wide bandgap devices

Etude transverse d'une analyse de cas:

PROOF pour l'évaluation de la robustesse et fiabilité des technologies HEMT AIN/GaN du domaine des ondes millimétriques (>30 GHz)

Présentée par: Nasri Said

Dirigée et encadrée par: Jean-Guy Tartarin et Nathalie Malbert

31

Ga

Motivations

<u>Pourquoi le HEMT GaN est parmi les meilleurs candidats ?</u> 5Ĝ 🕅

- Tension de claquage + GAP élevés \rightarrow Forte puissance + miniaturisation système - Réduction L_G + propriétés de transport électronique excellentes \rightarrow Fréquence élevée

Objectif

Pousser les limites de performances des HEMTs GaN pour l'amplification de forte puissance au-delà de 30 GHz:

...

Facteurs de dégradation

- Power Added Efficency (PAE) et puissance en sortie élevé
- Fréquence d'utilisation dans le domaine millimétrique
- Niveaux supérieurs de maturité, robustesse et de fiabilité (agression électrique et env.)

 \rightarrow Aires de sécurité de fonctionnement et profils de mission plus importants

Problèmes de fiabilité

- Effets d'auto-échauffements
- Effets de piégeage
- Effets de parasites
- Effets de punch-through
- Effets de champs électriques forts

Interdiffusion

•

- Effets piezo-électriques inverses
- Instabilités du composants
- Effondrement de courant
- Courant de fuite élevé

- Introduction
- Cadre et objectifs de la thèse

- Caractérisations statique, pulsée et robustesse-DC à l'IMS
- Caractérisations fréquentielle et robustesse-RF au LAAS (via PROOF)
- Conclusion et perspectives

Introduction

- Cadre et objectif de la thèse
- Résultats
 - Caractérisations statique, pulsé et robustesse-DC à l'IMS
 - Caractérisations fréquentielle et robustesse-RF au LAAS (via PROOF)
- Conclusion et perspectives

Introduction:

Spécifications technologiques des transistors HEMT GaN pour les applications microondes

Introduction:

Technologie à barrière d'AIN ultrafine (3nm) dévéloppée par IEMN

Introduction

Cadre et objectif de la thèse

Résultats

- Caractérisations statique, pulsé et robustesse-DC à l'IMS
- Caractérisations fréquentielle et robustesse-RF au LAAS (via PROOF)
- Conclusion et perspectives

Caractériser les effets parasites par des mesures électrique et/ou thermique

Appliquer des tests de vieillissement accéléré, identifier les mécanismes de dégradation induits et les modéliser

→ Evaluation de la robustesse
 → Définir l'aire de sécurité de fonctionnement (SOA)

Caractérisations I(V):

- En mode statique (DC)
- En mode pulsé
- En fonction de la température

- Stress DC par palier
- Stress RF par palier
- Paramètres S en mode continu
- Photoluminescence
- Transitoires de courant de drain (DCTS & I-DLTS)

Répartition de la thèse:

Plan des mesures, caractérisations et publications

- Introduction
- Cadre et objectif de la thèse

- Caractérisations statique, pulsée et robustesse-DC à l'IMS
- Caractérisations fréquentielle et robustesse-RF au LAAS (via PROOF)
- Conclusion et perspectives

Compromis induit par l'épaisseur du canal

13

Résultats: Test de robustesse: stress V_{DS} DC par palier

14

Les facteurs d'activation des mécanismes de degradation dépendent du point de repos

S. D. Burnham et al., "Towards an RF GaN Reliability Standard", Proceedings of the JEDEC Reliability of Compound Semiconductors Workshop (ROCS), Indian Wells, CA, 22nd May 2017.

N. Said et al. Role of AlGaN back-barrier in enhancing the robustness of ultra-thin AIN/GaN HEMT for mmWave applications, Microelectronics Reliability, 2023

AAS

CNRS

Aire de sécurité de fonctionnement-DC (SOA) et conclusions

- Introduction
- Cadre et objectif de la thèse

- Caractérisations statique, pulsé et robustesse-DC à l'IMS
- Caractérisations fréquentielle et robustesse-RF au LAAS (via PROOF)
- Conclusion et perspectives

Banc automatisé de vieillissement et robustesse haute fréquence sur puce

Pilote *Synoptique général du banc: **Alimentation DC** commutateur V_{DS} V_{GS} 45.153 14.235m 800 0000 002 Synthétiseur HF Wattmètre HP/ il-/// 50Ω DUT Chuc Voie de test 50Ω

- Les mesures de stress par palier, ont été effectué sur un banc adapté entièrement 50Ω.
- Les puissances analysées après le bilan des pertes sont ceux injecté à l'entrée du DUT et à sa sortie.

DUT : Device Under Test SW : Switch

HPA : High Power Amplifier HF : Haute Fréquence *Damien Saugnon ©

CNRS

Exemple de mesure stress-RF @10GHz obtenus sur un transistor de la structure E avec B-B

 V_{GS} (V)

Résultats en cours de publications N. Said et al., EuMW 2024 N. Said et al., ESREF 2024

Plan des tests et outils utilisés pour la compréhension des mécanismes de dégradation

Mesures ex-situ avant Stress-RF

- I(V) en mode statique
- Paramètres [S] en mode CW
- Photoluminescence

Mesures ex-situ après Stress-RF

- I(V) en mode statique
- Paramètres [S] en mode CW
- Photoluminescence

Effets du stress RF par palier sur les performances DC

Forte dégradation du courant de fuite en mode diode et transistor

❑ Léger décalage de la tension de seuil V_{th} → décalage de I_{DSsat}

Gamma Stabilité de G_m et R_{on}

N. Said et al. « Analyse de la robustesse des variantes technologiques de transistors HEMT AIN/GaN pour l'amplification de puissance dans le domaine millimétrique: corrélation entre stress DC et RF », JNM 2024

Exemple d'une mesure de *photoluminescence; composant vierge $L_{GD} = 2.5 \ \mu m$

Résultats: Détection de défauts par mesure de photoluminescence ; $L_{GD} = 2.5 \ \mu m$

Détection de défauts par mesure de photoluminescence ; $L_{GD} = 2.5 \ \mu m$

Identifier des défauts s'ils existent dans la bande 350 nm – 700 nm.
 Localiser l'apparition des défauts sur l'échantillon, hors contact métallique.
 Caractérisation non invasive

Effets du stress-RF sur les mesures de photoluminescence ; $L_{GD} = 2.5 \ \mu m$

Après stress RF

350

400

- **Pas de défauts identifier par microscope optique après stress RF.**
- **Pas de changement obtenus sur l'intensité du GaN en cartographie: qualité** cristalline stable.
- Pas d'apparition ou évolution de bande de défauts entre 350 nm et 700 nm.

PRÖØ

Résultats: Banc AMCAD PIV pour la caractérisation des transitoires de courant de Drain

*Synoptique du banc DCTS

AM3200A

- PIV-AM3200A (AMCAD)
 - SMU pulsé Drain : +250V / +30A
 - SMU pulsé Grille : ±25V / ±1A
 - Impulsion des SMU : 200ns à DC

Ex. interface IVCAD 🚺

😓 Sweep plan (multi-setup)	
🗋 New 🔓 Open 💢 Close 📇 Save 🔣 Save as	
Sweep plan	
Drag and drop actions into tree to build your sweep plan, double-click on an check box to select/unselect it.	
Change setup	
Change measurement configuration	G Change setup: Mode_DCTS_Tp 100ms.set
Change output file	Setup_rpuse = 100ms (2 toops)
	Input DUT biasing, quiescent: -2.0, pulse: 0.0
Change stop conditions	
Change S-Parameters frequencies	Change measurement configuration
Perform measurement	Perform measurement Jonut DI IT biasing, guingscents, 2,0, guiless 0,0,
🖗 Loop/Group (nestable)	Output DUT biasing, quiescent: 10.0, pulse: 0.0
T W-#	Change measurement configuration
	Perform measurement
U message	
OUT power state	Change setup: Mode_DCTS_Tp50ms.set
DUT biasing	
DUT biasing optimization	Setup_Tpulse = 10ms (2 loops)
Change wafer	Change setup: Mode_DCTS_Tp1ms.set
Change prober temperature	
Move prober	
OUT biasing sweep (nestable)	
🍲 Temperature sweep (nestable)	Variations :
🏟 Wafer plan (nestable)	variations.
Probe plan (nestable)	• Vcsa, Vpsa et Vpsi
Script (nestable)	
SCPI Command	• T _{Pulse} , T
SCPI Test (nestable)	
	Suite présentation
	ound presentation
	$T_{\rm p}$, = 100ms et T = 1s
	<i>I pulse</i> – 100 <i>ms ct I</i> – 1 <i>s</i>
	B X 1 + + +

Mesures préliminaires pour identifier le plan de test optimal

Echantillon **E** : $L_G = 100nm$, $L_{GD} = 1$, $5\mu m$, $W_G = 100\mu m$

Carac. de sortie $[V_{GSq}; V_{DSq}] = [0V; 0V]$

Mesures préliminaires pour identifier le plan de test optimal

Echantillon E: $L_G = 100nm$, $L_{GD} = 1$, $5\mu m$, $W_G = 100\mu m$

Mécanisme de dépiégeage le plus lent et absence des effets thermiques

- Introduction
- Cadre et objectif de la thèse
- Résultats
 - Caractérisations statique, pulsé et robustesse-DC à l'IMS
 - Caractérisations fréquentielle et robustesse-RF au LAAS (via PROOF)

Conclusion et perspectives

Conclusion et perspectives

Conclusion

AAS

Approche multi-outils: diversité, analyse et croisement des données.

→ Limiter les hypothèses des mécanismes intervenant dans la dégradation des performances.

→ Modélisation (petit signal , non-linéaire ...)

Perspectives

-Développement continu d'outils:

→ Comparer des mesures IDLTS et DCTS et valider

→ Limitation et compatibilité des bancs IDLTS vs. DCTS

-Identification de nouveau motifs de test générique (RF/Puissance):

- → Validation de process au même titre que les TLM
- → Possibilité de passage multi-banc sans limitation

Merci pour votre attention!

Pour plus d'informations sur les résultats scientifiques:

Nasri Said
Masri.said@laas.fr

Jean-Guy Tartarin

Martarin@laas.fr

Nathalie Malbert
Mathalie.malbert@u-bordeaux.fr

Collègues d'équipes:

Loïc Pouzenc (LAAS) Bastien Pinault (LAAS) Nathalie Labat (IMS) Thomas Pallaro (IMS) Arnaud Curutchet (IMS)

Collaborateurs:

Farid Medjdoub (IEMN) Kathia Harrouche (IEMN)

Caractérisation DC-RF: Damien Saugnon (I2C - LAAS) *Caractérisation optique: Richard Monflier (I2C - LAAS)*

