Traversal time for weakly synchronized CAN bus

Hugo Daigmorte, Marc Boyer

ONERA - The French aerospace lab

2ème Séminaire Toulousain en Réseaux (STORE)

Travaux présentés dans :

H. Daigmorte, M. Boyer, "Traversal time for weakly synchronized CAN bus", RTNS 2016.

H. Daigmorte, M. Boyer, J. Migge, "Reducing CAN latencies by use of weak synchronization between Stations", ICC 2017.

同 ト イヨ ト イヨ

Table of Contents

Context and goal

- CAN bus with offsets
- Global clock
- Local clocks
- Bounded phases
- Bounding network delay, considering offsets and weak synchronization
 - Network Calculus: short overview
 - Methods for bounding delay
- 3 Experimental results
 - Only Periodic Flows
 - Realistic case

ONERA

→ Ξ →

CAN bus with offsets Global clock Local clocks Bounded phases

Table of Contents

Context and goal

- CAN bus with offsets
- Global clock
- Local clocks
- Bounded phases

2 Bounding network delay, considering offsets and weak synchronization

3 Experimental results

・ 同 ト ・ ヨ ト ・ ヨ

ONERA

CAN bus with offsets Global clock Local clocks Bounded phases

Context

Context

- Real-time networked system
- CAN bus
- Periodic flows with Offsets
 - reduces contentions \Rightarrow reduces delays
 - requires synchronization

CAN bus with offsets Global clock Local clocks Bounded phases

Model and Goal

Model

- Flow F_i: P_i (Period), S_i (maximal frame Size), O_i (Offset)
- N nodes, each node j has a clock: $c_j(t)$
- Sending frame k: $c_j(t) = O_i + kP_i$

Goal

Accurate bound on network traversal time

aka Worst Case Traversal Time (WCTT)

• considering bounded phases

CAN bus with offsets Global clock Local clocks Bounded phases

Global clock

$$\forall j, j' : c_j(t) \approx c_{j'}(t)$$

- Advantage: efficient schedule \Rightarrow no contention
- Drawback: perfect synchronization (HW/SW cost)

CAN bus with offsets Global clock Local clocks Bounded phases

Local clocks

Advantage:

- efficient schedule \Rightarrow no contention intra-nodes
- $\bullet\,$ efficient schedule \Rightarrow workload spread over time

Context and goal CAN bus with offse Bounding network delay Global clock Experimental results Local clocks Conclusion Bounded phases

Bounded phases

$$orall j,j':c_j(t)-c_{j'}(t)\leq \Phi_{j,j'}$$

Objectives:

- Bounded phases: trade off between global and local clocks
- affordable synchronization
- reduces delays with regard to local clocks

Network Calculus: short overview Methods for bounding delay

Table of Contents

Context and goal

- Bounding network delay, considering offsets and weak synchronization
 - Network Calculus: short overview
 - Methods for bounding delay

3 Experimental results

4 Conclusion

ONERA

/□ ▶ < 글 ▶ < 글

Network Calculus: short overview Methods for bounding delay

Reality modeling

Network Calculus is a theory designed to compute memory and delay bounds in networks.

- Flow : Cumulative curve A
 - A(t) : amount of data sent up to time t
 - Properties: null at 0 (and before), non decreasing
- Server: simple arrival/departure relation:
 - Property: departure produced after arrival:

$$A \xrightarrow{S} D \Longrightarrow A \ge D$$

• Worst delay: d(A, S)

ONERA

Network Calculus: short overview Methods for bounding delay

Arrival curve and services

Real behaviors are unknown at design time \Rightarrow use of contracts

Traffic contract: arrival curve

A flow A has arrival curve α iff:

$$\forall t, d \in \mathbb{R}^+ : A(t+d) - A(t) \leq \alpha(d)$$

Server contract: service curve

For t, s in the same busy/backlogged period, a server S offers a strict minimal service of curve β iff:

$$D(t) - D(s) \ge \beta(t-s)$$

< 口 > < 同 > < 三 > < 三

ONERA

Network Calculus: short overview Methods for bounding delay

Arrival curve modeling synchronization

Consider two periodic flows: A_1, A_2 :

- what is the arrival curve of each A_i ?
- what is the arrival curve of each $A_1 + A_2$?

H. Daigmorte, M. Boyer Traversal time for

Network Calculus: short overview Methods for bounding delay

Arrival curve aggregated flow

Arrival curve for $\sum_{k=1}^{i} A_k$

- $\sum_{i=1}^{k} \alpha_i$ is an arrival curve
 - accurate for *sporadic* messages
 - does not model synchronization
- Capture the synchronization: $\alpha_{1..k}$ (Theorem 5)
 - intra-node (exact)
 - inter-node (bounded)
 - $\alpha_{1..k} \ll \sum_{i=1}^{k} \alpha_i$
- Efficient algorithm
- Requires common period (flow transformation)

ONERA

Network Calculus: short overview Methods for bounding delay

Bounding delay

Consider a flow of interest A_i

- $\sum_{k=1}^{i-1} A_k$ is the aggregate higher priority flow
- 3 methods to upper bound $d(A_i, D_i)$

・ 同 ト ・ ヨ ト ・ ヨ

ONERA

Network Calculus: short overview Methods for bounding delay

Method 1: higher priority aggregate arrival curve

- State of the art: $hDev(A_i, D_i) \le hDev(\alpha_i, \beta \sum_{j \le i} \alpha_j L)$
- Method 1: $hDev(A_i, D_i) \leq hDev(\alpha_i, \beta \alpha_{1..i-1} L)$
 - Taking into account synchronization between flows $A_1..A_{i-1}$
 - Synchronization $A_i \leftrightarrow A_k$ (k < i) is not considered

Network Calculus: short overview Methods for bounding delay

Method 2: bound busy period

- $hDev(A_i, D_i) \le (\beta \alpha_{1..i} L)^{-1}(0)$
 - Bound busy period for high priority flows (1..i)
 - Pessimistic if several messages of the same flow are in the same busy period

Network Calculus: short overview Methods for bounding delay

Method 3: bound D

- Solution Method 3 (Theorem 3): $hDev(A_i, D_i) \leq hDev(A_i, D_i)$
 - No arrival curves
 - Accuracy of result depends of knowledge of A_i

ONERA

/□ ▶ < 글 ▶ < 글

Only Periodic Flows Realistic case

Table of Contents

Context and goal

- 2 Bounding network delay, considering offsets and weak synchronization
- 3 Experimental results
 - Only Periodic Flows
 - Realistic case

4 Conclusion

ONERA

/□ ▶ < 글 ▶ < 글

Only Periodic Flows Realistic case

Configuration under study

- 250 kbit/s
- 10 nodes
- 62 flows
- Load: 35%
- Period: {20,50,100,200,500,1000}
- Payload: 1-8 bytes

Method	Synchronization	WCTT
Method 1	Phases	Bound
Method 2	Phases	Bound
Method 3	Phases	Bound
Method 4	Local clocks	Exact
Method 5	Global clock	Bound
Method 6	No offsets	Exact
(.)	10 2 2 1 1 1	

Phases : $c_j(t) - c'_j(t) \le \Phi$, Local clocks : $\Phi = \infty$, Global clocks : $\Phi = 0$, No offset : $O_i = 0/unknown$

Only Periodic Flows Realistic case

Existing methods

H. Daigmorte, M. Boyer Traversal time for weakly synchronized CAN bus 20 / 31

Only Periodic Flows Realistic case

Phases bounded by 0ms

H. Daigmorte, M. Boyer Traversal time for weakly synchronized CAN bus 21/31

Only Periodic Flows Realistic case

Phases bounded by ± 1 ms

H. Daigmorte, M. Boyer Traversal time for weakly synchronized CAN bus

22/31

Only Periodic Flows Realistic case

Phases bounded by ± 5 ms

H. Daigmorte, M. Boyer Traversal time for weakly synchronized CAN bus 23 / 31

Only Periodic Flows Realistic case

Phases bounded by ± 10 ms

Only Periodic Flows Realistic case

Table of Contents

Context and goal

- 2 Bounding network delay, considering offsets and weak synchronization
- 3 Experimental results
 - Only Periodic Flows
 - Realistic case

4 Conclusion

ONERA

э

/□ ▶ < 글 ▶ < 글

Only Periodic Flows Realistic case

Additional considerations

- Synchronization protocol
 - Periodic message send to each node
- Sporadic/Asynchronous flows and alarms

•
$$\beta - \sum_{\text{sporadic}} \alpha_i$$

• Transmission errors

•
$$\beta - \left(N_{error} + \left\lceil \frac{t}{T_{error}} \right\rceil - 1\right) \left(L_{max} + L_{error}\right)$$

Only Periodic Flows Realistic case

Configuration under study : a real CAN bus configuration [1]

- 500 kbit/s
- 6 nodes
- 69 flows
- Load: 60.25%

/□ ▶ < 글 ▶ < 글

Zeng, H., Di Natale, M., Giusto, P., Sangiovanni-Vincentelli, A. (2010). "Using statistical methods to compute the probability distribution of message response time in controller area network." IEEE Transactions on Industrial Informatics 2010.

Only Periodic Flows Realistic case

100% Periodic flows

Only Periodic Flows Realistic case

Periodic and Sporadic flows

		Periodic	Sporadic
Priorities	1-17	50%	50%
	18-34	75%	25%
	35-69	100%	0%
Part of the load		60%	40%

Distribution between periodic and sporadic messages

< 日 > < 同 > < 三 > < 三 >

Only Periodic Flows Realistic case

Periodic and Sporadic flows

Conclusion

• Offsets pro/cons

- Pro: reduced contention and delays
- $\bullet\,$ Cons: global clock has HW/SW cost
- Is there a benefit even with a weak inter-nodes synchronization ?

ONERA

/□ ▶ < 글 ▶ < 글

Conclusion

• Offsets pro/cons

- Pro: reduced contention and delays
- $\bullet\,$ Cons: global clock has HW/SW cost
- Is there a benefit even with a weak inter-nodes synchronization ?
- Results : only periodic and no error
 - Phases 10% minimal period \Rightarrow Gain 75%
 - Phases 50% minimal period \Rightarrow Gain 45%

ONERA

Conclusion

• Offsets pro/cons

- Pro: reduced contention and delays
- $\bullet\,$ Cons: global clock has HW/SW cost
- Is there a benefit even with a weak inter-nodes synchronization ?
- Results : only periodic and no error
 - Phases 10% minimal period \Rightarrow Gain 75%
 - Phases 50% minimal period \Rightarrow Gain 45%
- Further work
 - Use a large set of configurations
 - Extend the results, obtained on a bus, to a multi-link network.

ONERA

- A - E - M