Séminaire STORE

DCoflow: Deadline-Aware Scheduling Algorithm for Coflows in Datacenter Networks

Quang-Trung Luu, Olivier Brun, Rachid El-Azouzi, Francesco De Pellegrini, Balakrishna J. Prabhu

LAAS-CNRS, Toulouse, France

April 6th, 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Outline

Introduction

Problem Formulation and Existing Works

DCoflow

Numerical Results

Conclusion

▲□▶▲圖▶▲圖▶▲圖▶ = ● ● ●

Introduction

・ロト ・四 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Context

- Distributed computing frameworks such as Hadoop MapReduce or Apache Spark
- Massive data transfers in datacenter networks (e.g, shuffle phase)

Coflow: set of concurrent flows related to a common task

STORE 18, April 6th, 2022

(日)

Coflow scheduling

- Minimization of Coflow Completion Time (CCT)
 - ✓ Maximize the rate at which coflows are dispatched in the network fabric.
 - ✓ NP-hard, inapproximable below a factor 2
 - Near-optimal algorithms¹

Maximization of Coflow Acceptance Rate (CAR)

- Strict coflow deadlines for online services and mission critical computing tasks
- ✔ Joint coflow admission control and scheduling
- ✓ NP-hard, inapproximable within any constant factor

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

¹

M. Shafiee et al., An improved bound for minimizing the total weighted completion time of coflows in datacenters, IEEE/ACM Trans. Netw., vol. 26, no. 4, 2018.

S. Agarwal et al., Sincronia: Near-optimal network design for coflows. in Proc. ACM SIGCOMM, 2018.

M. Chowdhury et al.,. Near optimal coflow scheduling in networks, in Proc. ACM SPAA, 2019.

Contributions

Lightweight method for coflow scheduling under deadlines

- Admission control and coflow priorities.
- ✓ Based on known results for open-shop scheduling
- Offline and Online versions
- Extensive simulations with synthetic traffics and real traces obtained from a Facebook dataset.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Problem Formulation and Existing Works

STORE 18, April 6th, 2022

(日)

System model and notations

▶ Big-Switch model
 ✓ Capacity B_ℓ for port ℓ

• Set
$$C = \{1, 2, \dots, N\}$$
 of coflows

- ✓ Coflow k is a set \mathcal{F}_k of flows, where flow $j \in \mathcal{F}_k$ has size $v_{k,j}$
- ✓ Coflow k arrive at time 0 and has deadline T_k
- ✓ $\mathcal{F}_{k,\ell}$ is the of flows of coflow *k* which use port ℓ
- ✓ The completion time of coflow k at port l in isolation is

$$p_{\ell,k} = \frac{\sum_{j \in \mathcal{F}_{k,l}} \mathsf{v}_{k,j}}{B_{\ell}}$$

System model and notations

- Example
 - \checkmark All fabric ports have the same normalized bandwidth of 1
 - ✓ The flows are organised in virtual output queues at the ingress ports. The virtual queue index represents the flow output port

STORE 18, April 6th, 2022

・ロト ・ 四ト ・ 日ト ・ 日下

CAR maximization problem

Decision variables:

✓ $r_{k,j}(t) \ge 0$: rate allocated to flow $j \in \mathcal{F}_k$ at time t✓ $z_k \in \{0,1\}$ is 1 if coflow k is accepted, 0 otherwise

Mathematical formulation:

$$\max \sum_{k \in \mathcal{C}} z_k$$
(P1)
s.t.
$$\sum_{k \in \mathcal{C}} \sum_{j \in \mathcal{F}_{k,\ell}} r_{k,j}(t) \le B_{\ell}, \quad \forall \ell \in \mathcal{L}, \forall t \in \mathcal{T},$$
(1)
$$\int_0^{T_k} r_{k,j}(t) \, \mathrm{d}t \ge v_{k,j} z_k, \quad \forall j \in \mathcal{F}_k, \forall k \in \mathcal{C},$$
(2)

MILP formulation² assuming that rate allocations are constant over the intervals [0, T_{i(1)}), [T_{i(1)}, T_{i(2)}),..., [T_{i(N-1)}, T_{i(N)})

2

IP S.-H. Tseng et al., Coflow deadline scheduling via network-aware optimization, Annu. Allert. Conf. Commun. Control Comput., 2018. (ロト・合か・くきト・き) き つへへ STORE 18. April 6th. 2022 10 / 27

σ -order scheduling

- The transport layer may not be able to enforce the per-flow rate allocation $r_{k,j}(t)$.
- Alternative approach: order the coflows in some appropriate order, and leverage priority forwarding mechanisms
 - ✓ Order σ such that coflow $\sigma(n)$ has priority over coflow $\sigma(n+1)$
 - ✓ A flow is blocked if and only if either its ingress port or its egress port is busy serving a higher-priority flow
 - Preemption is allowed

CS-MHA algorithm

Moore-Hogdson algorithm

EDD order	1	2	3	4	5	6	7	8	Rejected
Due date	6	8	9	11	20	25	28	35	Jobs
Proc. time	4	1	6	3	6	8	7	10	
ССТ	4	5	11						
ССТ	4	5	*						3
ССТ	4	5	*	8	14	22	29		3
ССТ	4	5	*	8	14	*	21		3, 6
ССТ	4	5	*	8	14	*	21	31	3, 6

CS-MHA³

- ✓ First round: computes the set of admitted coflows at each port ℓ with Moore-Hogdson. A coflow is admitted if it is admitted at all ports.
- ✓ Second round: order rejected coflows by increasing value of $\frac{1}{T_k} max_{\ell} p_{\ell,k}$
- 3
- S. Luo et al., Decentralized deadline-aware coflow scheduling for datacenter networks, in Proc. IEEE ICC, 2016.

STORE 18, April 6th, 2022

CS-MHA (2)

Example

- $T_1 = 1, \ T_2 = T_3 = T_4 = T_5 = 2$
- CS-MHA rejects C_2 , C_3 , C_4 , C_5 (CAR is $\frac{1}{5}$)
- The optimal solution rejects only C₁ (CAR is ⁴/₅)

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

 CS-MHA neglects the impact that a coflow may have on other coflows on multiple ports.

DCoflow

STORE 18, April 6th, 2022

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Parallel inequalities

 \blacktriangleright If the set $\mathcal{S}\subseteq \mathcal{C}$ of accepted coflows is feasible, then

$$f_\ell\left(\mathcal{S}
ight) - \sum_{k\in\mathcal{S}} p_{\ell,k} T_k \leq 0, \quad ext{ for all ports } \ell,$$

where $f_{\ell}(S) = \frac{1}{2} \sum_{k \in S} p_{\ell,k}^2 + \frac{1}{2} \left(\sum_{k \in S} p_{\ell,k} \right)^2$

▶ If the subset $S \subseteq C$ of coflows is not feasible, we need to reject at least one coflow $k' \in S$. We choose k' so as to minimize

$$f_{\ell}(\mathcal{S} \setminus \{k'\}) - \sum_{k \in \mathcal{S} \setminus \{k'\}} p_{\ell,k} T_k = f_{\ell}\left(\mathcal{S}
ight) - \sum_{k \in \mathcal{S}} p_{\ell,k} T_k + \Psi_{\ell,k'}$$

where $\Psi_{\ell,k'} := p_{\ell,k'} \left(T_{k'} - \sum_{k \in S} p_{\ell,k} \right)$

STORE 18, April 6th, 2022

▲□▶▲□▶▲□▶▲□▶ □ のQの

DCoflow

- ▶ Input: a set $S = \{1, ..., N\}$ of unsorted coflows
- Output: scheduling order σ of accepted coflows.
- At each round, DCoflow either accepts a coflow or it rejects one:
 - Bottleneck link $\ell_b = \operatorname{argmax}_{k \in S} p_{\ell,k}$
 - ► Let k be the coflow with the largest deadline on port l_b. If coflow k meets its deadline when scheduled last on port l_b, then accept k
 - Otherwise, reject the coflow k' which uses port ℓ_b and minimizes

$$\sum_{\ell:\Psi_{\ell,k'}<0}\Psi_{\ell,k'}$$

A post-processing is done to accept unduly rejected coflows

STORE 18, April 6th, 2022

DCoflow (2)

► Example

► $T_1 = 1$, $T_2 = T_3 = T_4 = T_5 = 2$ ► Round 1: $\ell_b = 1$ with CT $2 + \epsilon$ $\sum_{\ell:\Psi_{\ell,1} < 0} \Psi_{\ell,1} = 8 \times 1 \times (1 - (2 + \epsilon)) \approx -8$ $\sum_{\ell:\Psi_{\ell,2} < 0} \Psi_{\ell,2} = 2 \times (1 + \epsilon) \times (2 - (2 + \epsilon)) \approx 0$

・ロト ・ 四ト ・ 日ト ・ 日下

 C₁ is rejected an all other coflows are accepted (CAR is ⁴/₅)

STORE 18, April 6th, 2022

DCoflow - Online Setting

Coflows arrive sequentially and possibly in batches

- DCoflow recomputes a schedule at frequency f:
 - Updates at arrival instants of coflows $(f = \infty)$
 - Periodic updates with period 1/f
 - Scheduling order for all coflows present in the system (with residual size)

The scheduler knows everything about coflows that have arrived, and nothing about future coflows

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Numerical Results

STORE 18, April 6th, 2022

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Simulation setup

- Algorithms : DCoflow, CS-MHA, CDS-LP, CDS-LPA, Varys, Sincronia
- Instances [M, N] with 2 × M ports and N coflows
 Greedy rate allocation by the transport network
- Synthetic traffic with 2 types of coflows (type-1 with proba 0.4)
 - ► Type-1 coflows have a single flow of random volume N(1,0.04). The number of flows of type-2 coflows is U(²/₃M, M) (volume ratio is 0.8). The deadline is chosen randomly in [CCT⁰, 2CCT⁰].

Facebook dataset (MapReduce shuffle, 3000-machines cluster)

► *N* coflows are randomly sampled from the dataset.

STORE 18, April 6th, 2022

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Offline setting

Synthetic traffic (100 random instances)

(a) small-scale networks

(b) large-scale networks

Facebook (100 random instances)

(a) small-scale networks

(b) large-scale networks

Offline setting (2)

▶ 1st-10th -50th-90th-99th percentiles of gain in CAR for [10, 60]

Prediction error

- Relative difference between the number of coflows satisfying their deadline before/after GreedyFlowScheduling
- Average prediction error below 3.6% for both traffic traces

STORE 18, April 6th, 2022

イロト イヨト イヨト

э

Online setting - Impact of arrival rate

Synthetic traffic (40 instances)

(a) [10, 4000]

э

STORE 18, April 6th, 2022

Online setting – Impact of update frequenccy

Synthetic traffic [10, 8000] (40 instances)

(a) Without batch arrivals

(b) Batch arrivals

<ロト < 同ト < 三ト < 三ト

э

Conclusion

STORE 18, April 6th, 2022

・ロト ・四 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Conclusion

Joint coflow admission control and scheduling with deadlines

- Based on known results for open-shop scheduling
- ✓ Produces a σ -order of accepted coflows
- Significant improvements w.r.t. existing algorithms, in particular for large-scale and congested networks

Future works

- ✓ Workload is composed of coflows with deadlines and coflows without deadlines
- Weighted coflow admission control
- Incomplete information on the flow volume

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Questions?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ