Séminaire STORE 2019

Optimal Capacity of Fog Computing Infrastructures under Probabilistic Delay Guarantees

I. Stypsanelli - O. Brun - B.J. Prabhu - S. Medjiah

LAAS-CNRS, Toulouse, France

LAAS-CNRS

Outline

Fog Computing

- 2 Mathematical model
- 3 Experimental Results

Fog Computing

Fog Computing: benefits and threats

Fog Computing

- Computing, networking and storage resources close to users.
- Connected vehicles, augmented reality, smart cities, etc.

Expected benefits

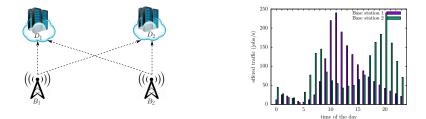
Reduced latency, preservation of network resources, greater security, privacy and resilience, as well as easier scalability.

Threats

 Duplication of distributed resources may lead to an explosion of capacity, energy and operation costs

Geographic diversity vs data-centre sizes

Example



✓ Fully distributed solution: minimum latency, but provisioned for 240 + 240 = 480 jobs/s.

✓ Centralized solution: higher latency, but provisioned only for 282 jobs/s.

Trade-off between geographic diversity and data-centre sizes

Capacity planning of micro data-centres

Decisions

- ✓ Where to place micro-datacentres? How big to make them?
- ✓ How user-generated requests are routed to these data-centres?

Objective

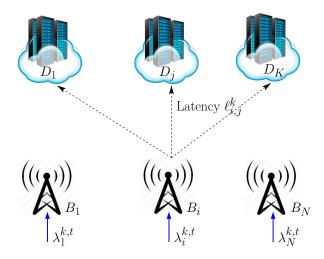
Minimize infrastructure cost under probabilistic delay guarantees

Formulation as a Mixed Integer Linear Programming (MILP) problem

Greenfield design or brownfield design

Mathematical model

Input Data

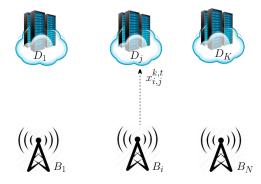


Routing variables

✓ $x_{i,j}^{k,t}$ amounts of class-k traffic from BS i to DC j at time t

$$\sum_{j} x_{i,j}^{k,t} = \lambda_i^{k,t}, \quad x_{i,j}^{k,t} \ge 0$$

✓ Binary variables $a_{i,j}^{k,t} = 1$ if $x_{i,j}^{k,t} > 0$, and 0 otherwise



Other variables

✓ Choose whether site *j* is selected
$$(u_j = 1)$$
 or not $(u_j = 0)$

✓ Choose the capacity c_j in DC j such that

 $\mathbb{P}\left(S_{j}^{t}+\ell_{i,j}\geq T\right)\leq\delta,\quad\forall t$

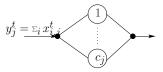
Problem Formulation

$$\begin{split} \text{minimize } & \sum_{j \in \mathcal{D}} \left(\beta_j \, u_j \ + \ g_j(c_j) \right) \\ \text{s.t} \\ & \mathbb{P} \left(S_j^{k,t} + \ell_{i,j}^k \geq T_k \right) \leq \delta_k, \\ & \sum_{j \in \mathcal{D}} x_{ij}^{k,t} = \lambda_i^{k,t}, \\ & \dots \\ & x_{ij}^{k,t} \geq 0, \\ & u_j, a_{i,j}^{k,t} \in \{0,1\}, \end{split}$$

Queueing model

$$\checkmark$$
 c_j parallel M/M/1 queues

$$\mathbb{P}\left(S_{j}^{t} \geq z\right) = e^{-(\mu - y_{j}^{t}/c_{j})z}$$



 \checkmark The latency constraint of jobs can be satisfied at site *j* iff

$$\ell_{i,j} a_{i,j}^t < T - rac{\log(rac{1}{\delta})}{\mu}, \quad i \in \mathcal{B}, t = 1, \dots, au$$

 \checkmark Optimal capacity at data center j

$$c_j \geq \frac{y_j^t}{\mu - d_{i,j}} - M\left(1 - a_{i,j}^t\right), \qquad (1)$$

$$c_j \geq 0,$$
 (2)

where *M* is a large constant and $d_{i,j} = \log(\frac{1}{\delta})/[T - \ell_{i,j}]$.

Objective function

Linear objective function

minimize $\sum_{j \in D} (\beta_j u_j + \alpha_j c_j)$ (CAPA-PL)

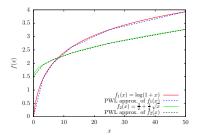
subject to previous linear constraints .

Concave objective function (economies of scale)

minimize
$$\sum_{j \in D} (\beta_j u_j + g_j(c_j))$$

s.t. linear constraints .

Piecewise linear approximation



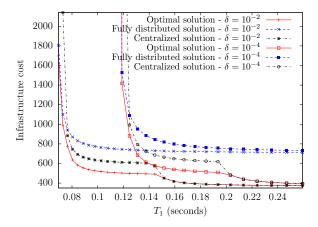
Simple Scenario

✓ 2 private data centres , 1 big public cloud, and 2 base stations.

$$100 \times (u_1 + u_2) + c_1 + c_2 + \frac{3}{4} \times c_3$$

 Real-time jobs (variable offered traffic) and best-effort jobs (constant offered traffic)

Simple Scenario – Results



Experimental Results Simple Scenario – Results

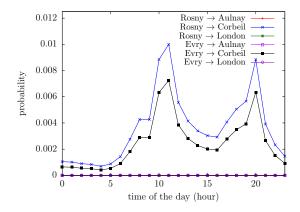
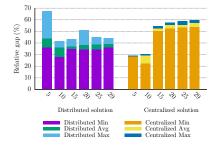


Figure: Probability that the end-to-end delay in the optimal solution be greater than T = 100 ms when $\delta = 0.01$.

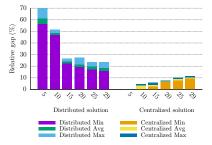
Larger number of base stations

- Same potential data centres, but 29 base stations.
- ✓ Real-time jobs with $T_1 = 105$ ms and $\delta_1 = 0.01$ and best-effort jobs
- ✓ 1st scenario = 5 first base stations, 2nd scenario = 10 first base stations, etc.
- 16 randomly generated problem instances for each scenario using a spatio-temporal traffic model

Larger number of base stations



Linear objective function



Logarithmic objective function

Conclusion

Conclusion

Optimal capacity-planning of micro data centres as a MILP problem

- ✓ Can be solved efficiently even for large-size problem instances
- ✓ Significant cost savings can be obtained w.r.t. heuristic solutions

Future work

- Resource sharing between job classes (e.g., strict priority mechanism),
- ✔ General distribution of job service times (analytical approximations),
- Advanced load-balancing policies (e.g., Power of Two Choices or Join the Shortest Queue).

Questions ?