Optimisation de codes correcteurs d'effacements par application de

transformées polynomiales

Jonathan Detchart

18 février 2019

- 1. Introduction et Contexte
- 2. Transformées polynomiales efficaces
- 3. Evaluation de performances
- 4. Conclusion

Introduction et Contexte

Que sont les codes correcteurs d'effacements et à quoi servent-ils ?

Emetteur :

Décomposition de la multiplication

Sur \mathbb{F}_{2^w} , on décompose la multiplication en opérations dans \mathbb{F}_2 .

- Itoh et Tsujii, 1989 : Structure of Parallel Multipliers for a Class of Fields $GF(2^m)$
 - Implémentation hardware de la multiplication des corps finis
- Bloemer et al, 1995 : An XOR-Based Erasure-Resilient Coding Scheme
 - Implémentation software pour la transmission de données
- Blaum et Roth, 1999: On lowest density MDS codes
 - Propose une limite basse théorique en nombre de xor pour les codes MDS

Implémenter l'arithmétique des corps finis : méthode xor-based

Un élément du corps fini \mathbb{F}_{2^w} peut être représenté par une matrice binaire w * w: $a(x), c(x) \in \mathbb{F}_{2^4} = \mathbb{F}_2[X]/(x^4 + x + 1)$ avec $a(x) = 1 + x^2 + x^3$ et $c(x) = x + x^3$.

- multiplication par c(x) : 12 xors dans $\mathbb{F}_2[X]/(x^4 + x + 1)$.
- Dans l'implémentation, il faut parcourir les w^2 bits un à un $\Rightarrow w^2$ conditions.

Le nombre de xor n'est pas uniquement déterminé par le nombre de monomes :

Les méthodes utilisant les tables précalculées

- L. Rizzo, 1997 : Effective Erasure Codes For Reliable Computer Communication Protocols
 - Implémentation d'un code à effacement sur \mathbb{F}_{2^w}

Multiplication par accès mémoires vers des tables précalculées :

```
Sur \mathbb{F}_{2^8}:

1 void addmul(uint8_t* dst, uint8_t* src, uint8_t e, int sz) {

2 for (int i = 0; i < sz; i++) {

3 dst[i] ^= multable[e][src[i]];

4 }

5 }
```

Sur \mathbb{F}_{2^w} , la table précalculée pour la multiplication contiendra $2^w * 2^w$ valeurs.

Les méthodes utilisant les tables précalculées

Nouvelles instructions

- 1999 : Intel introduit Streaming SIMD Extensions (SSE)
- 2006 : Supplemental Streaming SIMD Extensions 3 \Rightarrow instruction *pshufb*
- H. Li et Q. Huang, 2008 : Parallelized network coding with SIMD instruction sets
 - Implémentation de la multiplication dans \mathbb{F}_{2^8} avec l'instruction SSE <code>pshufb</code>
- H. P. Anvin, 2009 : The mathematics of RAID-6
 - Implémentation de l'arithmetique des corps finis pour RAID-6 (\mathbb{F}_{2^8})
- J. S. Plank, K. M. Greenan et E. L. Miller, 2013 : Screaming fast Galois Field arithmetic using Intel SIMD instructions
 - Implémentation de la multiplication dans \mathbb{F}_{2^w} avec $w \in 4, 8, 16, 32$ (avec *pshufb*)

Méthode la plus efficace pour implémenter l'arithmétique des corps finis dans un code correcteur d'effacement

Les opérations dans un corps fini sont complexes. Nous effectuons les opérations dans un anneau.

- En utilisant des transformées rapides, on plonge les éléments d'un corps fini dans un anneau plus grand
- Les opérations de multiplication dans un anneau sont plus rapide à effectuer
- On applique une transformée inverse pour revenir dans un corps fini

Opérations dans un anneau

Proposition :

Travailler dans un anneau polynomial $\mathbb{F}_2[x]/(x^n+1)$

La multiplication est faite modulo $x^n + 1 \Rightarrow$ décalage cyclique

 $\mathsf{ex}: a(x) \in \mathbb{F}_2[x]/(x^4+1)$

$$a(x) = 1 + x^3 =$$

Le nombre de monome détermine le nombre de xor à effectuer !

Transformées polynomiales efficaces

Comment transformer efficacement les éléments d'un corps fini en éléments d'un anneau et vice-versa ?

$$\mathbb{F}_{2^{w}}: \qquad (\alpha_{0}, \ldots, \alpha_{k-1}) \qquad \times \left(\begin{array}{ccc} \gamma_{0,0} & \cdots & \gamma_{0,n-1} \\ \vdots & \ddots & \vdots \\ \gamma_{k-1,0} & \cdots & \gamma_{k-1,n-1} \end{array}\right)$$

 $R_{2,w+i}$:

$$\mathbb{F}_{2^{w}}: \qquad (\alpha_{0}, \ldots, \alpha_{k-1}) \qquad \times \left(\begin{array}{ccc} \gamma_{0,0} & \cdots & \gamma_{0,n-1} \\ \vdots & \ddots & \vdots \\ \gamma_{k-1,0} & \cdots & \gamma_{k-1,n-1} \end{array}\right)$$

$$\Downarrow$$

 $R_{2,w+i}$:

$$\mathbb{F}_{2^{w}}: \qquad (\alpha_{0}, \dots, \alpha_{k-1}) \qquad \times \begin{pmatrix} \gamma_{0,0} & \cdots & \gamma_{0,n-1} \\ \vdots & \ddots & \vdots \\ \gamma_{k-1,0} & \cdots & \gamma_{k-1,n-1} \end{pmatrix}$$

$$\Downarrow$$

$$R_{2,w+i}: \qquad (a_{0}, \dots, a_{k-1})$$

 $R_{2,w+i}: (a_0, \ldots, a_{k-1})$

Utilisation des transformées¹

$$\mathbb{F}_{2^{w}}: \qquad (\alpha_{0},\ldots,\alpha_{k-1}) \quad \times \begin{pmatrix} \gamma_{0,0} & \cdots & \gamma_{0,n-1} \\ \vdots & \ddots & \vdots \\ \gamma_{k-1,0} & \cdots & \gamma_{k-1,n-1} \end{pmatrix} \qquad = (\beta_{0},\ldots,\beta_{n-1})$$

[1] J. Detchart and J. Lacan : Polynomial ring transforms for efficient XOR-based erasure coding, ISIT 2017

Quelles sont les opérations effectuées ?

Evaluation de performances

Implémentation d'un codec pour le code MDS sur \mathbb{F}_{2^4} et \mathbb{F}_{2^6} : Pyrit (PolYnomial RIng Transform)

- Codec utilisant des matrices de Cauchy (généralisées ou non)
- Calculs via les registres SIMD sur architecture Intel x86_64 (SSE, AVX) et ARM (Neon)
- Méthode Parity et Embedding selon les paramètres du code

2] J. Detchart, J. Lacan : Improving the Coding Speed of Erasure Codes with Polynomial Ring Transforms, GLOBECOM 2017

Présentation des architectures testées

Machine x86 (Intel i7-6700) :

Comparaison de Pyrit avec ISA-L (Intel)

Raspberry	Pi 3	(ARMv7)	:
-----------	------	---------	---

Comparaison de Pyrit avec Jerasure

Machine (16GB)				
Package P#0				
L3 (8192KB)				
L2 (256KB)	L2 (256KB)	L2 (256KB)	L2 (256KB)	
L1d (32KB)	L1d (32KB)	L1d (32KB)	L1d (32KB)	
L1i (32KB)	L1i (32KB)	L1i (32KB)	L1i (32KB)	
Core P#0	Core P#1	Core P#2	Core P#3	
PU P#0	PU P#1	PU P#2	PU P#3	
PU P#4	PU P#5	PU P#6	PU P#7	

Machine (1024MB)				
Package P#0				
L2 (512KB)				
L1 (32KB)	L1 (32KB)	L1 (32KB)	L1 (32KB)	
Core P#0 PU P#0	Core P#0 PU P#0	Core P#0 PU P#0	Core P#0 PU P#0	

Implémentation efficace

17

Implémentation efficace

1:	<pre>function ADDMUL(dst,src,e,sz)</pre>	19:
2:	for $i = 0$ to sz step 64 do	20:
3:	$r0 \leftarrow dst[i]$	21:
4:	$r1 \leftarrow dst[i+1*16]$	22:
5:	$r2 \leftarrow dst[i+2*16]$	23:
6:	$r3 \leftarrow dst[i+3*16]$	24:
7:	$r4 \leftarrow 0$	25:
8:	$r5 \leftarrow source[i]$	26:
9:	$r6 \leftarrow source[i+1*16]$	27:
10:	$r7 \leftarrow source[i + 2 * 16]$	28:
11:	$r8 \leftarrow source[i + 3 * 16]$	29:
12:	if e & 1 then	30:
13:	$r0 \leftarrow r0 \ \mathbf{xor} \ r5$	31:
14:	$r1 \leftarrow r1 \ {f xor} \ r6$	32:
15:	$r2 \leftarrow r2 \text{ xor } r7$	33:
16:	<i>r</i> 3 ← <i>r</i> 3 xor <i>r</i> 8	34:
17:	end if	35:
18:	if e & 2 then	36:

$r1 \leftarrow r1$ xor $r5$	37:
$r2 \leftarrow r2 \mathbf{xor} r6$	38:
<i>r</i> 3 ← <i>r</i> 3 xor <i>r</i> 7	39:
$r4 \leftarrow r4 \mathbf{xor} r8$	40:
end if	41:
ife & 4 then	42:
$r2 \leftarrow r2 \mathbf{xor} r5$	43:
<i>r</i> 3 ← <i>r</i> 3 xor <i>r</i> 6	44:
$r4 \leftarrow r4 \mathbf{xor} r7$	45:
$r0 \leftarrow r0 \mathbf{xor} r8$	46:
end if	47:
ife & 8 then	48:
<i>r</i> 3 ← <i>r</i> 3 xor <i>r</i> 5	49:
<i>r</i> 4 <i>← r</i> 4 xor <i>r</i> 6	50:
$r0 \leftarrow r0 \mathbf{xor} r7$	51:
$r1 \leftarrow r1$ xor $r8$	52:
end if	53: end
if e & 16 then	

 $r4 \leftarrow r4 \text{ xor } r5$ $r0 \leftarrow r0 \text{ xor } r6$ $r1 \leftarrow r1 \text{ xor } r7$ $r2 \leftarrow r2 \text{ xor } r8$ end if $r0 \leftarrow r0 \text{ xor } r4$ $r1 \leftarrow r1 \text{ xor } r4$ $r2 \leftarrow r2 \text{ xor } r4$ $r3 \leftarrow r3 \text{ xor } r4$ $dst[i] \leftarrow r0$ $dst[i + 1 * 16] \leftarrow r1$ $dst[i + 2 * 16] \leftarrow r2$ $dst[i + 3 * 16] \leftarrow r3$ end for function

Présentation des codecs testés³

		Pyrit	ISA-L	Jerasure
ch.	×86 (SSE, AVX)	\checkmark	\checkmark	\checkmark
Ar	ARM (Neon)	\checkmark	-	\checkmark
Lib.	Langage	C,asm	asm	С
	Lignes de code	18935	26884	18556
Corps Fini	\mathbb{F}_{2^4}	\checkmark	-	\checkmark
	\mathbb{F}_{2^6}	\checkmark	-	-
	\mathbb{F}_{2^8}	\checkmark	\checkmark	\checkmark

 \Rightarrow méthode *Split table* utilisée pour tous les cas testés

[3] ISA-L: https://github.com/01org/isa-I, Jerasure: http://jerasure.org/

Code (n, k) = (12, 8) sur \mathbb{F}_{2^4} (i7-6700)

code (12,8) systématique

22

Code (60, 40) sur \mathbb{F}_{2^6} (i7-6700)

23

Code (60, 40) sur \mathbb{F}_{2^6} (i7-6700)

24

Code (60,40) systématique : codage sur plusieurs cœurs

Code (60, 40) sur \mathbb{F}_{2^6} (ARMv7)

code (60,40) systématique

Un code sur \mathbb{F}_{2^8}

Machine x86 (Xeon 8164 Scalable Processor)

- 26 cœurs, 32 registres SIMD, support de AVX512
- Construction du corps fini \mathbb{F}_{2^8} par composition sur \mathbb{F}_{2^4}

Conclusion

Par l'utilisation de transformées rapides :

- le nombre d'opérations au codage et au décodage est réduit
- grâce à la structure cyclique des anneaux polynomiaux utilisés, la matrice génératrice est parcourue plus efficacement
- l'implémentation ne nécessite pas d'instructions particulières

Perspectives : quelles améliorations sont possibles ?

Poursuite des travaux sur \mathbb{F}_{2^8} :

- Implémentation sur ARMv8 (32 registres SIMD)
- Améliorations sur x86

Travaux sur les code autres que les codes MDS :

- LDPC non binaires, Locally Repairable Codes, codes à fenêtres glissantes
- Codes correcteurs d'erreurs

Analyse de performance sur du massivement parallèle (GPGPU)

Merci de votre attention.

Questions ?