Optimizing Network Calculus for Switched Ethernet Network with Deficit Round Robin

$\begin{array}{cc} {\bf Aakash \ SONI} \ ^{1,2} & {\rm Xiaoting \ LI} \ ^2 \\ {\rm Jean-Luc \ SCHARBARG} \ ^1 & {\rm Christian \ FRABOUL} \ ^1 \end{array}$

¹IRIT Toulouse

 2 ECE Paris

aakash.soni@irit.fr

STORE - 2019

February 18, 2019

Institut de Recherche en Informatique de Toulouse

Context : Evolution of Avionic Network

- Traditional aircraft network ARINC 429. (Airbus A320)
 - Mono-transmitter buses with limited performances (100 Kbits/s).
- Avionics Full DupleX (AFDX) network.
 - Switched Ethernet ARINC 664. (Airbus A380)
 - A backbone network for the avionics platform.
 - **100** Mbps.
 - FIFO/SP queues.

• ARINC 664 : Indeterminism at Switch level.

• Competition for the use of the resources.

- Congestion = frame losses
- Frame storage in queues = Latency and jitter.

• Need of guaranteed bounds for certification.

■ Inefficient use of available bandwidth.^[1]

- Lightly loaded network (up to 10 % only).
 - Possibility to share bandwidth among critical (avionic) and non-critical flow.
 - Example:
 - > Audio message from cockpit to cabin.
 - > Parking video.
- Solution : Quality of Service (QoS) mechanism.

 H. Charara, J-L.Scharbarg, J. Ermont and C.Fraboul, "Methods for bounding end-to-end delays on an AFDX network," ECRTS 2006.

Context: Objective 1

How to make better use of available bandwidth?

- QoS : Share bandwidth using Round Robin Scheduler.
 - Deficit Round Robin (DRR) scheduling.
 - Weighted Round Robin (WRR) scheduling.^[1]

 [1]] A. Soni, X. Li, J-L.Scharbarg, and C.Fraboul, "WCTT analysis of avionics Switched Ethernet Network with WRR Scheduling," RTNS 2018.

Aakash SONI

Optimizing NC for Networks with DRR 4/42

Context: Objective 2

Performance analysis of DRR and WRR scheduler in AFDX network.

- Worst-case end-to-end delay.
- Fairness.

Context: Objective 3

Improve delay bound computation.

■ Reduce pessimism in analysis approach.

Table of Contents

- 1 Context
 - Objectives
 - Switched Ethernet Network
 - DRR Algorithm
 - Network Calculus
- 2 Contribution
 - Optimization
 - DRR vs WRR
- 3 Conclusion

Table of Contents

1 Context

Objectives

Switched Ethernet Network

- DRR Algorithm
- Network Calculus
- 2 Contribution
 - Optimization
 - DRR vs WRR

3 Conclusion

Switched Ethernet Network : AFDX Network Model

AFDX network model

End-Systems (e_x)
 FIFO output ports
 Switches (S_x)
 Statically defined flows.

Avionic flows are characterized as virtual links;

- Statically defined : predictable deterministic behavior.
- Maximum frame length: S_{max}
- Minimum delay between two consecutive frames: BAG (Bandwidth Allocation Gap)
- Multi-cast routing

Table of Contents

1 Context

- Objectives
- Switched Ethernet Network

DRR Algorithm

- Network Calculus
- 2 Contribution
 - Optimization
 - DRR vs WRR

3 Conclusion

Active flow buffers

$$\begin{split} &Q=20\\ &\Delta: Deficit\\ &Credit=Q+\Delta \end{split}$$

Q_{C_1}	Δ_{C_1}	Q_{C_2}	Δ_{C_2}

Active flow buffers

 $\begin{aligned} Q &= 20 \\ \Delta &: Deficit \\ Credit &= Q + \Delta \end{aligned}$

Q_{C_1}	Δ_{C_1}	Q_{C_2}	Δ_{C_2}
20			

Active flow buffers

$$\begin{split} Q &= 20 \\ \Delta &: Deficit \\ Credit &= Q + \Delta \end{split}$$

Δ_{C_1}	Q_{C_2}	Δ_{C_2}
0		
	Δ_{C_1} 0	$\begin{array}{c c} \Delta_{C_1} & Q_{C_2} \\ \hline 0 & \\ \end{array}$

Active flow buffers

$$\begin{split} &Q=20\\ &\Delta: Deficit\\ &Credit=Q+\Delta \end{split}$$

Q_{C_1}	Δ_{C_1}	Q_{C_2}	Δ_{C_2}
20	0	20	

Active flow buffers

Q_{C_1}	Δ_{C_1}	Q_{C_2}	Δ_{C_2}
20	0	20	10

Active flow buffers

Q_{C_1}	Δ_{C_1}	Q_{C_2}	Δ_{C_2}
20	0	20	10
20			

Active flow buffers

Q_{C_1}	Δ_{C_1}	Q_{C_2}	Δ_{C_2}
20	0	20	10
20	0		

Active flow buffers

Q_{C_1}	Δ_{C_1}	Q_{C_2}	Δ_{C_2}
20	0	20	10
20	0	20	

Active flow buffers

$$\begin{split} Q &= 20 \\ \Delta &: Deficit \\ Credit &= Q + \Delta \end{split}$$

Q_{C_1}	Δ_{C_1}	Q_{C_2}	Δ_{C_2}
20	0	20	10
20	0	20	0

 V6
 V1
 V2
 V7
 V3
 V4

 Aakash SONI
 Optimizing NC for Networks with DRR
 20/42

Table of Contents

1 Context

- Objectives
- Switched Ethernet Network
- DRR Algorithm
- Network Calculus
- 2 Contribution
 - Optimization
 - DRR vs WRR

3 Conclusion

Network calculus

- Computes **upper bounds** on:
 - End-to-end delay.
 - Jitter.
- Pessimism: models network based on **traffic envelops**.
 - Overestimated flow traffic.
 - Underestimated network service.

Network Calculus: Traffic Envelops

Network Calculus: Traffic Envelops : Arrival Traffic

Aakash SONI

Optimizing NC for Networks with DRR 24/42

Network Calculus: Traffic Envelops : Arrival Curve

Aakash SONI

Optimizing NC for Networks with DRR 25/42

Network Calculus: Traffic Envelops : Network Service

Aakash SONI

Optimizing NC for Networks with DRR 26/42

Network Calculus: Traffic Envelops : Service Curve

Aakash SONI

Optimizing NC for Networks with DRR 27/42

Network Calculus: Traffic Envelops : Delay

Aakash SONI

Optimizing NC for Networks with DRR 28/42

Network Calculus: Traffic Envelops : Optimization

Aakash SONI

Optimizing NC for Networks with DRR 29/42

Network Calculus: Traffic Envelops : Optimization

Aakash SONI

Optimizing NC for Networks with DRR 30/42

Table of Contents

1 Context

- Objectives
- Switched Ethernet Network
- DRR Algorithm
- Network Calculus

2 Contribution

- Optimization
- DRR vs WRR

3 Conclusion

Table of Contents

1 Context

- Objectives
- Switched Ethernet Network
- DRR Algorithm
- Network Calculus
- 2 Contribution
 - Optimization
 - DRR vs WRR
- 3 Conclusion

Pessimism in computed network service

Aakash SONI Optimizing NC for Networks with DRR 33/42

Pessimism in computed network service

Aakash SONI Optimizing NC for Networks with DRR 34/42

Upper bound on interfering traffic

More accurate delay computation

Evaluation

- Airbus A350 configuration
- 984 flows, 96 end systems, 8 switches, 6412 paths

Table of Contents

1 Context

- Objectives
- Switched Ethernet Network
- DRR Algorithm
- Network Calculus
- 2 Contribution
 - Optimization
 - DRR vs WRR
- 3 Conclusion

Performance Analysis

alaga	No. of	DRR	WRR weight	frame size
Class	flows	Quantum (bytes)	(no. of packets)	range
C_1	718	$4 \ge l_{max}$	4	415 - 475
C_2	194	$2 \ge l_{max}$	2	911 - 971
C_3	72	$1 \ge l_{max}$	1	1475 - 1535

class	DRR vs WRR		
Class	avg difference $(\%)$	max difference $(\%)$	
C_1	29.16	52.7	
C_2	29.6	52.3	
C_3	-35.4	-68.8	

Table of Contents

1 Context

- Objectives
- Switched Ethernet Network
- DRR Algorithm
- Network Calculus
- 2 Contribution
 - Optimization
 - DRR vs WRR

3 Conclusion

Conclusion

- NC on AFDX network with mixed criticality
- QoS: DRR scheduling.
- Evaluation of improved NC approach.
- Performance comparison of DRR and WRR schedulers.
- What's next?
 - Exact worst case delay using model checking approach.
 - \blacksquare Classical MC Appraoch => upto 32 flows
 - Improved Appraoch => 300+ flows
 - Evaluation of pessimism of NC for avionic network with DRR and WRR scheduler.
 - Weight/Quantum allocation in Round Robin scheduler (WRR/DRR)

• Thank you for your attention!

Aakash SONI - aakash.soni@irit.fr

Aakash SONI Optimizing NC for Networks with DRR 42/42