Systèmes à retards

Application à la commande de Réseaux TCP

Yassine ARIBA

Encadrants: F. Gouaisbaut - Y. Labit

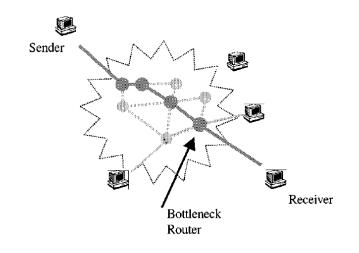
Groupes: MAC - OLC

Contexte

Réseau TCP

"Transmission Control Protocol"

- → contrôle le trafic des flux de données
- → les flux circulent via des routeurs
- → si trafic trop intense: congestion
- ⇒ Pertes, augmentation du retard
- \Rightarrow mauvaise qualité de service



♦ Idée:

Appliquer la théorie de l'Automatique aux réseaux

- \rightarrow [Hollot et *al*, 2002]: P,PI; [Quet et *al*, 2004]: \mathcal{H}_{∞} ; [Kim, 2003]: prédicteur.
- → [Michiels et Niculescu, 2005]: Lyapunov; [Kim, 2006]: retour d'état, PID, prédicteur.

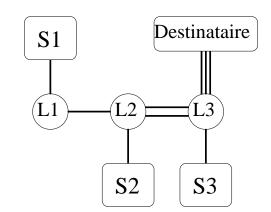
Structure générale

Modélisation de l'intéraction sources-liens:

→ Modèle général, très connu dans la littérature.

Un réseau

- \rightarrow ensemble de L liens
- ightharpoonup utilisés par un ensemble de N sources
- ightharpoonup chaque source i utilise un ensemble $L_i \subseteq L$ de liens



Ces ensembles définissent la matrice de routage $R \in \mathbb{R}^{L \times N}$:

$$R_{li}=\left\{egin{array}{ll} 1, & ext{si } l\in L_i \ 0, & ext{sinon.} \end{array}
ight., ext{ par exemple: } R=\left[egin{array}{ll} 1 & 0 & 0 \ 1 & 1 & 0 \ 1 & 1 & 1 \end{array}
ight]$$

la l^{ieme} ligne représente les sources empruntant le lien l.

la i^{ieme} colonne représente les liens empruntés par la source i.

Structure générale

Chaque source i envoie des paquets avec un débit $x_i(t)$.

→ On définit l'agrégat de flux à chaque lien:

$$y_l(t) = \sum_i R_{li} x_i (t - \tau_{li}^f), \ \tau_{li}^f$$
 est le *forward delay* de la source i au lien l .

Chaque lien l renvoie une mesure de la congestion (ou prix) $p_l(t)$.

 \rightarrow On définit l'agrégat des prix de tous les liens traversés par la source i.

$$v_i(t) = \sum_l R_{li} p_l(t-\tau_{li}^b), \ \tau_{li}^b$$
 est le *backward delay* du lien l à la source i .

L'expression de $v_i(t)$ n'est pas exacte, valable seulement si $p_l << 1$.

Structure générale

Si l'on redéfinit la matrice de routage par deux matrices:

The delayed forward routing matrix:

The delayed backward routing matrix:

$$[R_f(s)]_{li} = \begin{cases} e^{-\tau_{li}^f s}, & \text{si } l \in L_i \\ 0, & \text{sinon.} \end{cases}$$

$$[R_b(s)]_{li} = \begin{cases} e^{-\tau_{li}^b s}, & \text{si } l \in L_i \\ 0, & \text{sinon.} \end{cases}$$

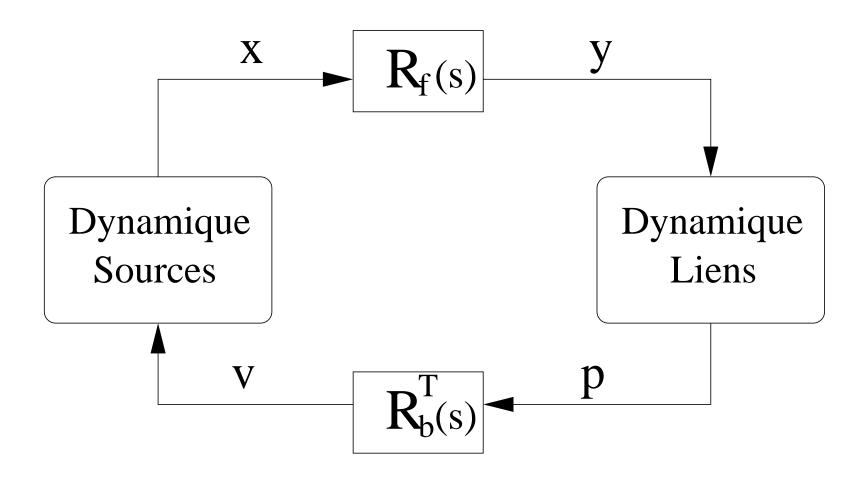
On a donc:

$$y(s) = R_s(s)x(s),$$

$$q(s) = R_b^T(s)p(s).$$

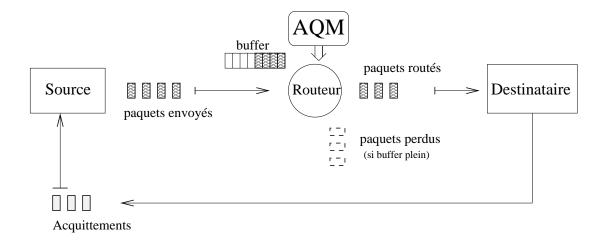
Reste à définir le système de contrôle de congestion:

- (i) Comment les sources ajustent leur taux d'envoi par rapport à l'agrégat des prix.
 - → Algorithme de TCP
- (ii) Comment les liens ajustent leur prix par rapport à l'agrégat de flux.
 - → Algorithme des AQM



Interconnection entre les sources et les liens

Système considéré



La source envoie *W* paquets → le receveur accuse réception

Si paquets transmis → augmenter le taux d'envoie: W+1

Si pertes → réduire le taux d'envoi: W/2

- ullet Durée d'un échange: RTT (Round Trip Time) $R(t)=\mbox{temps de propagation }+\mbox{temps de file d'attente.}$
- AQM par défaut: DropTail

Comportement bien connu du "Additive-increase Multiplicative-decrease".

Hypothèses:

- File d'attente modélisée par un processus de Poisson

Le modèle différentiel [Misra et al, 2000]

$$\begin{cases} \dot{W} = \frac{1}{R(t)} - \frac{W(t)W(t-R(t))}{2R(t-R(t))} p(t-R(t)) \\ \dot{q} = \frac{W(t)}{R(t)} N(t) - C \\ R = \frac{q(t)}{C} + T_p \end{cases}$$

Avec:

- $W \doteq$ taille moyenne de la fenêtre (paquets)
- \bullet $q \doteq$ taille moyenne de la file d'attente (paquets)
- $R \doteq$ round trip time (RTT) (secondes)
- $C \doteq$ capacité de la connection (paquets/seconde)
- $N \doteq$ nombre de connection TCP
- $p \doteq$ probabilité: mesure de congestion

Représentation par l'espace d'état

On pose: $x_1(t) = \delta W(t)$, $x_2(t) = \delta q(t)$ et $u(t) = \delta p(t)$.

$$\dot{x}(t) = \underbrace{\left[\begin{array}{ccc} -\frac{N}{R_0^2 C} & -\frac{1}{CR_0^2} \\ \frac{N}{R_0} & -\frac{1}{R_0} \end{array} \right]}_{A} x(t) + \underbrace{\left[\begin{array}{ccc} -\frac{N}{R_0^2 C} & -\frac{1}{CR_0^2} \\ 0 & 0 \end{array} \right]}_{A_d} x(t - R(t)) + \underbrace{\left[\begin{array}{ccc} -\frac{C^2 R_0}{2N^2} \\ 0 \end{array} \right]}_{B} u(t - R(t))$$

Notre approche:

- → modélisation par espace d'état des variables W et q.
- → prise en compte du retard.

Hypothèses: N et le retard (R(t) = h) constants

Le but est donc d'étudier le système à retards:

$$\Sigma: \dot{x}(t) = Ax(t) + A_dx(t-h) + Bu(t-h)$$

Etude de stabilité des systèmes à retards

Etude des pôles

Résolution de l'équation caractéristique (quasipolynomiale):

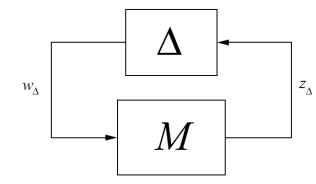
$$\Delta(s) = det(s|_n - A - A_de^{-hs}) = 0$$

- Méthode d'analyse, pas de synthèse.
- Ne permet pas l'étude de la robustesse.

Approche robuste

Transformation du système sous forme d'une interconnection: M étant le système nominal, sans retard.

- $ightharpoonup \Delta$ contient une expression du retard
- →Avec les méthodes de la commande robuste on déduit des conditions sur le retard h.



Approche par Lyapunov

Extension de la théorie de Lyapunov classique $\rightarrow LyapunovKrasovskii$.

La théorie de Krasovskii considère une fonction $x_t(\theta)$ plutôt qu'un vecteur x(t).

$$x_t(.) = \begin{cases} [-h, 0] \to \mathbb{R}^n \\ \theta \to x_t(\theta) = x(t + \theta) \end{cases}$$

Deux types de critères de stabilité:

- Critères IOD (Independent of Delay).
 - \Rightarrow Stabilité assurée quelque soit le retard $h \in \mathbb{R}^+$
- Critères DD (Dependent-Delay).
 - ⇒ Stabilité assurée sous certaines conditions sur le retard

Conditions de décroissance d'une fonction de Lyapunov

 \rightarrow Critères \mathcal{LMI} .

La méthode directe (Sipahi et Olgac, 2002-2006)

Système à retards de forme: $\dot{x}(t) = Ax(t) + A_dx(t-\tau)$

Equation caractéristique: $CE(s,\tau) = \sum_{k=0}^{n} a_k(s)e^{-k\tau s} = 0$

- \rightarrow polynôme en deux variables s et $e^{\tau s}$: quasipolynôme
- On remplace les termes en $e^{-\tau s}$ [Rekasius, 1980]

$$e^{-\tau s} = \frac{1 - Ts}{1 + Ts}, \ \tau \in \mathbb{R}^+, \ T \in \mathbb{R}.$$

avec
$$au=rac{2}{\omega}[tan^{-1}(\omega T)\pm l\pi]$$
, $l=0,1,2..\infty$

 \rightarrow substitution exacte pour $s=j\omega$.

Nouvelle équation caractéristique:

$$CE(s,T) = \sum_{k=0}^{n} a_k(s)(1+Ts)^{n-k}(1-Ts)^k = 0$$

La méthode directe (Sipahi et Olgac, 2002-2006)

- Tableau de Routh \Rightarrow polynômes en T.
- ightharpoonup Détection des changements de signe pour $T \in \mathbb{R}$: T_k , k=1,...,m. Pour chaque T_k , $CE(s,\tau)$ et CE(s,T) ont des racines imaginaires pures $\pm j\omega_k$.
- ullet Trouver les pôles imaginaires purs correspondants : $\{\omega\}=\omega_1,\omega_2...,\omega_m$
- ullet Déduction des retards au correspondants (premières valeurs positives).

$$\tau_{kl} = \frac{2}{\omega} [tan^{-1}(\omega T) \pm l\pi] \Big|_{\substack{\omega_k \\ T_k}}, \ l = 0, 1, 2..\infty$$

Sens de croisement de l'axe imaginaire:

$$RT|_{\substack{\omega_k \\ \tau_{kl}}} = sgn\left[\mathcal{R}e\left(\frac{ds}{d\tau} \Big|_{\substack{s \equiv \omega_k i \\ \tau \equiv \tau_{kl}}} \right) \right], pour \left\{ \begin{array}{l} k = 1, 2..., m \\ l = 0, 1..\infty \end{array} \right.$$

 \rightarrow On montre que RT est indépendant de la répétition du retard l.

Approche par Lyapunov

Fonctionnelle de Lyapunov-Krasovskii pour l'étude IOD.

$$V_1 = x^T(t)Px(t) + \int_{t-h}^t x^T(s)Qx(s) ds \Rightarrow \begin{bmatrix} A^TP + PA + Q & PA_d \\ A_d^TP & -Q \end{bmatrix} \prec 0$$

→ Extension à la synthèse directe.

Approche analytique

$$\dot{x}(t) = \begin{bmatrix} -\frac{N}{R_0^2 C} & -\frac{1}{CR_0^2} \\ \frac{N}{R_0} & -\frac{1}{R_0} \end{bmatrix} x(t) + \begin{bmatrix} -\frac{N}{R_0^2 C} & -\frac{1}{CR_0^2} \\ 0 & 0 \end{bmatrix} x(t - R(t)) + \begin{bmatrix} -\frac{C^2 R_0}{2N^2} \\ 0 \end{bmatrix} u(t - R(t))$$

Pour R_0 , N et C > 0, A est hurwizt.

 A_d peut être compensée par un retour d'état avec $K=[k_1 \ k_2]$ t.q. $\left\{ egin{array}{ll} k_1=rac{2N^3}{R_0^3C^3} \ k_2=-rac{2N^2}{R_0^3C^3} \end{array}
ight.$

◆ Approche IOD ⇒ { terme retardé = perturbation}.

Analyse de stabilité DD

Fonctionnelle de Lyapunov Krasovskii choisie: [Gouaisbaut et al, 2006]

$$V(x_{t}) = x'_{t}(0)Px_{t}(0) + \int_{-\frac{h}{r}}^{0} \int_{\theta}^{0} \dot{x}'_{t}(s)R\dot{x}_{t}(s)dsd\theta + \int_{-\frac{h}{r}}^{0} \begin{pmatrix} x_{t}(s) \\ x_{t}(s - \frac{1}{r}h) \\ \vdots \\ x_{t}(s - \frac{r-1}{r}h) \end{pmatrix}^{\prime} Q \begin{pmatrix} x_{t}(s) \\ x_{t}(s - \frac{1}{r}h) \\ \vdots \\ x_{t}(s - \frac{r-1}{r}h) \end{pmatrix} ds$$

Proposition 1 Σ stable pour u(t)=0, si $\exists P, R \in \mathbb{R}^{n \times n}$ et $Q \in \mathbb{R}^{rn \times rn}$ définies positives et $P_i \in \mathbb{R}^{n \times n}$ telles que

$$\begin{bmatrix} \frac{h}{r}\mathbf{R} & \mathbf{P} & 0 & 0 \\ \mathbf{P} & -\frac{r}{h}\mathbf{R} & \frac{r}{h}\mathbf{R} & 0 \\ 0 & \frac{r}{h}\mathbf{R} & -\frac{r}{h}\mathbf{R} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & \dots & 0 \\ \vdots & \mathbf{Q} & \vdots \\ 0 & \dots & 0 \end{bmatrix} - \begin{bmatrix} 0 & \dots \\ 0 & \dots \\ \vdots & \mathbf{Q} \end{bmatrix}$$

soit satisfaite.

Analyse de stabilité DD

Preuve

Soit le système à retards: $\dot{x}(t) = Ax(t) + A_dx(t-h)$

On peut réécrire le Σ sous la forme:

$$S\xi=0, \ \mathrm{avec}\, S=\left[egin{array}{cccc} -\mathrm{I} & A & \mathrm{O}_{n imes(r-1)n} & A_d \end{array}
ight] \, \mathrm{et}\, \xi=\left[egin{array}{cccc} \dot{x}(t) & & & & \\ x(t) & & & & \\ x(t-rac{1}{r}h) & & & & \\ x(t-rac{r-1}{r}h) & & & \\ x(t-h) & & & \end{array}
ight]$$

A partir de la dérivée de la fonctionnelle de Lyapunov Krasovskii, on obtient

$$\xi^T \Gamma \xi \prec 0 \tag{1}$$

Avec $\Gamma \in \mathsf{R}^{(r+2)n \times (r+2)n}$ symétrique et fonction de h, **P**, **Q** et **R** linéairement.

D'après le lemme de Finsler, $\exists~X \in \mathsf{R}^{(r+2)n \times n}$ tel que

$$\mathbf{\Gamma} + \mathbf{X}S + S^T \mathbf{X}^T \prec \mathbf{0} \tag{2}$$

Stabilisation

Proposition 2 Σ stable pour u(t) = Kx(t), si $\exists P \in \mathbb{R}^{n \times n}$, $R \in \mathbb{R}^{n \times n}$ et $Q \in \mathbb{R}^{rn \times rn}$ définies positives et $P_i \in \mathbb{R}^{n \times n}$ (i = 2, ..., r + 3) telles que

$$egin{aligned} oldsymbol{\Gamma} + egin{bmatrix} oldsymbol{P_2} \ oldsymbol{P_3} \ dots \ oldsymbol{P_{r+3}} \end{bmatrix} - oldsymbol{I} & A^T & 0 & \cdots & 0 & A_d^T + oldsymbol{K^T}B^T \end{bmatrix} + * \prec 0 \end{aligned}$$

soit satisfaite. Le gain stabilisant est donné par K .

Pour la synthèse: problème \mathcal{BMI} .

- ♠ Algorithme de relaxation:
 - \bullet on fixe les multiplieurs P_i .
 - on alterne les phases analyses et synthèses.
- → solution optimale localement.
- → problème d'initialisation.
 - ullet initialisation systématique avec le gain K *IOD*.
- Algorithme du cone complémentaire.

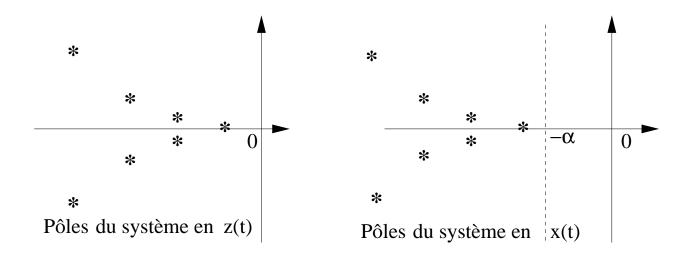
Principe de α -Stabilité

On considère un nouveau système: $z(t) = e^{\alpha t}x(t)$

$$\dot{z}(t) = (\alpha \mathbf{I} + A)z(t) + e^{\alpha h}A_d z(t - h)$$

 α impose la dynamique minimale de convergence.

- ightharpoonup On applique les critères au nouveau système en z(t).
- ightharpoonup Si le système en z(t) stable alors le système en x(t) α -stable.



Robustesse

$$\dot{x}(t) = \begin{bmatrix} -\frac{N}{R_0^2 C} & -\frac{1}{CR_0^2} \\ \frac{N}{R_0} & -\frac{1}{R_0} \end{bmatrix} x(t) + \begin{bmatrix} -\frac{N}{R_0^2 C} & -\frac{1}{CR_0^2} \\ 0 & 0 \end{bmatrix} x(t-h) + \begin{bmatrix} -\frac{C^2 R_0}{2N^2} \\ 0 \end{bmatrix} u(t-h)$$

Retard $h = R_0$ pas connu précisément.

ightharpoonup On suppose $R_0 \in [R_{0_{min}}, R_{0_{max}}]$.

Méthode: considérer un ensemble de systèmes au lieu d'un seul.

→ Utilisation de polytopes.

Problème A, A_d sont non linéaires en R_0 .

- \rightarrow Ensemble incertain Ω non convexe.
- igotimes idée: on pose $ho_1=rac{1}{R_0}$, $ho_2=rac{1}{R_0^2}$ et $ho_3=R_0$.
 - ullet Les matrices du système sont linéaires en les ho_i
 - ullet L'ensemble ${\mathcal P}$ généré par la variation de R_0 est un polytope.

Le polytope englobe le système incertain: $\Omega \subset \mathcal{P}$

 \mathcal{P} stable $\Rightarrow \Omega$ stable

Exemple numérique

60 sources envoient des paquets via un routeur.

temps de propagation $T_p=0.2$ s, taille de buffer de référence $q_{ref}=175$ paquets, bande passante $C=15 {
m Mb/s}$. RTT résultant $R_0=0.247 {
m s}$.

Stabilisation d'un polytope

$${\rm synth\`ese\ IOD}\left\{\begin{array}{ll} R_{0_{min}}=0.1\\ R_{0_{max}}=0.4 \end{array}\right. {\rm synth\`ese\ DD}\left\{\begin{array}{ll} R_{0_{min}}=0.1\\ R_{0_{max}}=0.5 \end{array}\right.$$

Performances

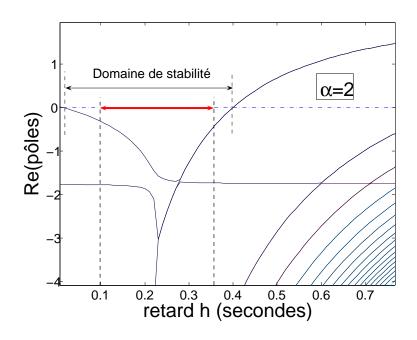
	$\alpha = 1$	$\alpha = 2$	$\alpha = 3$
nominal: h_{max}	0.9	0.36	0.22
polytope: $R_{0_{max}}$	0.3	0.25	

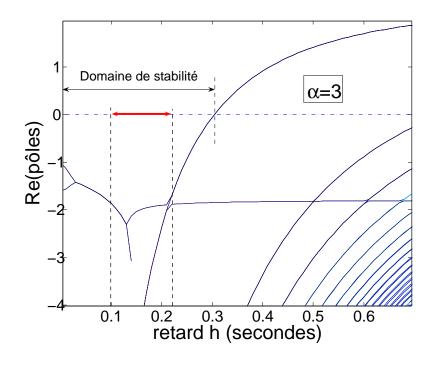
valeur minimale du retard $R_{0_{min}} = h_{min} = 0.1$.

Exemple numérique

Evolution des pôles de z(t) pour $h \in \mathbb{R}^+$:

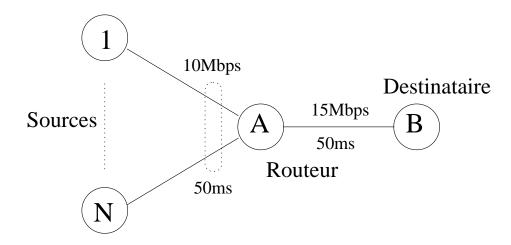
$$\text{écart théorique:} \begin{cases} \alpha = 2 \rightarrow h \in [0.1, 0.36] \\ \alpha = 3 \rightarrow h \in [0.1, 0.22] \end{cases}$$





Validation avec le logiciel *DDE-BIFTOOL*: méthodes numériques d'analyse. (K. Engelborghs, Université de Leuven, Belgique)

• Interface Tcl (*Tool Command Language*): Topologie, configuration et scénario



Noyau C++: Programmation et intégration de modules.

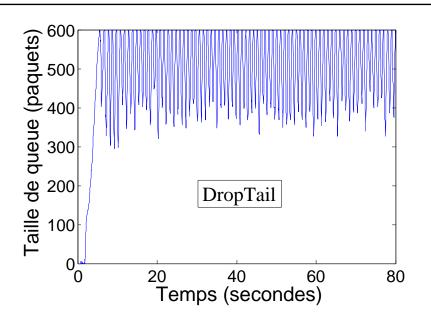
Interface → spécification de la discipline de buffer: *DropTail*, *RED*...

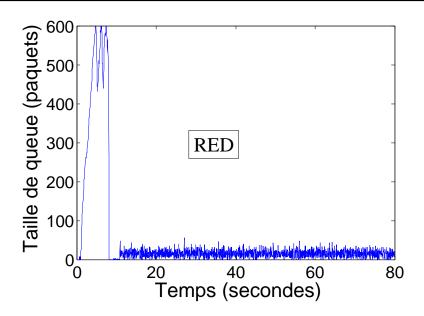
\$ns duplex-link \$A \$B 15Mb 50ms DropTail

Ajout de nos propres AQM: PI, GAIN-K

→ Implémentation dans le noyau

Simulations





DropTail:

Stratégie antérieure aux AQM

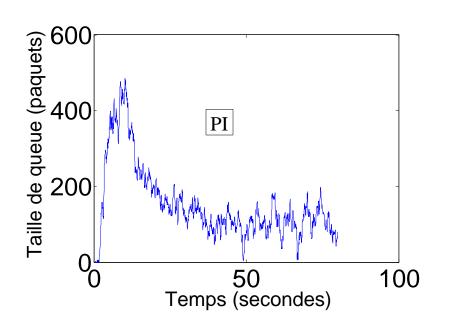
- Laisse passer tous les paquets tant que possible.
- Si buffer plein \rightarrow paquets perdus (p = 1).

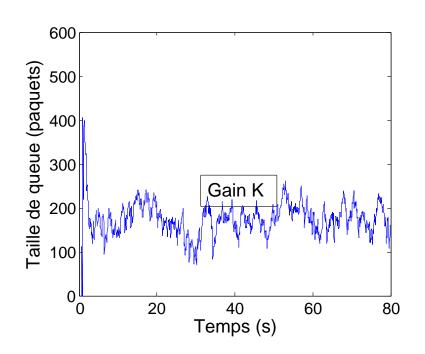
RED:

But: Anticiper la congestion

- Ejection de paquets avec une certaine probabilité.
- Méthode intuitive et empirique.
- Réglages difficiles.

Simulations





AQM par l'Automatique:

- PI: 1^{er} AQM issue de la théorie de la commande
- Problème de régulation
- Choix du point d'équilibre: problème d'optimisation
- Objectifs:
- → Utilisation du buffer efficace: ni saturé, ni quasi-vide (sous utilisation)
- → Limiter le temps de latence

Travaux futurs et perspectives

Partie Automatique

- ◆ Améliorer les critères de stabilisation → réduire le conservatisme
 - \Rightarrow Mise sous forme (\mathcal{LMI})
- Envisager d'autres approches
 - ⇒ Commande robuste
 - \Rightarrow Forme singulière: retard \in état du système

Partie Réseaux

- Valider la théorie
 - ⇒ Simulateur: logiciel *NS*
 - ⇒ Emulation sur plate-forme
- Prise en compte de difficulté supplémentaire (incertitudes, variations)
- Etude sur des réseaux plus complexes.
- Etude sur d'autres protocoles de communication.

Modèle avec un seul routeur et des sources hétérogènes

basée sur le modèle de (Misra, Hollot...): cas Single link and heterogeneous sources:

$$\begin{cases} \dot{w}_{i}(t) = \frac{1}{\tau_{i}(t)} - \frac{w_{i}(t - \tau_{i}^{*})w_{i}(t)}{2\tau_{i}(t - \tau_{i}^{*})}p(t - \tau_{i}^{*}) \\ \dot{q}(t) = -c + \sum_{i=1}^{N} \frac{w_{i}(t)}{\tau_{i}(t)} \\ \tau_{i} = d_{i} + \frac{q(t)}{c} \end{cases}$$

Linéarisation:

$$\begin{bmatrix} \delta \dot{W}_{1}(t) \\ \vdots \\ \vdots \\ \delta \dot{W}_{N}(t) \\ \delta \dot{q}(t) \end{bmatrix} = \begin{bmatrix} a_{1} & 0 & \dots & 0 & b_{1} \\ 0 & a_{2} & \dots & 0 & b_{2} \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & a_{N} & b_{N} \\ \frac{1}{R_{10}} & \frac{1}{R_{20}} & \dots & \frac{1}{R_{N0}} & e \end{bmatrix} \begin{bmatrix} \delta W_{1}(t) \\ \vdots \\ \delta W_{N}(t) \\ \delta q(t) \end{bmatrix} + \begin{bmatrix} a_{1} & 0 & \dots & c_{1} \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix} x(t - h_{1})$$

$$+ \dots + \begin{bmatrix} 0 & \dots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & a_{N} & c_{N} \\ 0 & \dots & 0 & 0 \end{bmatrix} x(t - h_{N}) + \begin{bmatrix} d_{1} \\ 0 \\ \vdots \\ \vdots \\ d_{N} \end{bmatrix} p(t - h_{1}) + \dots + \begin{bmatrix} 0 \\ \vdots \\ d_{N} \end{bmatrix} p(t - h_{N})$$