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Linear matrix inequality

mn
F(z) =Fo+ > =zF; >0
i=1

where F; are given symmetric real matrices and constraint =~ O
means positive semidefinite (all eigenvalues real nonnegative)

Arise in control theory (Lyapunov 1890, Willems 1971, Boyd et
al. 1994), combinatorial optimization, finance, structural me-
chanics, and many other areas

Key property = convex in x



Semidefinite programming

Decision problem

ming Zz C;T;
S.t. Fo + YixiF; =0

Optimization over LMIs = semidefinite programming, versatile
generalization of linear (and convex quadratic) programming to
the convex cone of positive semidefinite matrices

At given accuracy can be solved in polynomial time using interior-
point methods (Nesterov, Nemirovski 1994)

Many public-domain solvers available
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Geometry of LMI sets

How does an LMI set

n
=1

look like in Euclidean space 7
Matrix F(x) is PSD iff its diagonal minors f;(x) are nonnegative

So the LMI set can be described as

a convex closed basic semialgebraic set



Semialgebraic formulation
For an d-by-d matrix F(z) we have 2¢ — 1 diagonal minors
A simpler criterion follows from the fact that a poly t — f(t) =
Sk fd_ktk = [, (t — t;) which has only real roots satisfies t;, < O

iff f. >0

Apply to characteristic poly f(t,z) = det(tI;+F(z)) = S¢_ 4 fa_r(z)tF
which is monic, i.e. fo(z) =1

Only d poly inegs fi.(x) > 0 to be checked

Polys fi.(x) are sums of principal minors of F'(x) of order k
or equivalently sums of k-term-products of eigenvalues of F(x)



Example of 2D LMI feasible set

l—xz1 x1+ x> 1
Flx)=|x14+20 2—12> 0] ~ 0
1 0 1+xp

System of 3 polynomial inequalities f;(x) > O
fi1(x) =trace F(x) =4 —x1 >0



f2o(z) =5 — 3wy + xp — 205 — 2w170 — 235 > 0




f3(x) =detF(x) =2—2x1 +a:2—3:13%—3x1x2—2x%—x1x%—x5’ >0




LMI set = intersection of level-sets fi.(z) >0, k=1,2,3

-4 | | | | | | |
-4 -3 -2 -1 0 1 2 3 4
Xl

Boundary of LMI region shaped by determinant
Other polys only isolate convex connected component




LMI set or not 7

r1xo > 1 and x1 > 0



LMI
x1xo> > 1 and x1 >0
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LMI set or not ?

{x € R? : t2 +2z1t + x5 > 0, Vt € R}



NOT LMI: not basic semialgebraic

o zx% or x1,x0 >0



LMI set or not ?
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NOT LMI: not connected
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LMI set or not 7
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LMI set or not ?




NOT LMI: not rigidly convex




Determinantal representation

Consider the non-empty semialgebraic set

F={xeR" : f(x) >0}
where f(x) is a given polynomial of degree d

Without loss of generality, assume that we are given a point e
(typically the origin) satisfying f(e) = 1

Since the boundary of an LMI set is shaped by a determinant,
can we find symmetric real matrices F; such that

mn
F(z)=Fo+ Y x;F;, det F(z) = f(x)
i=1
So we would like to find a linear symmetric determinantal
representation for polynomial f(x)



Definite determinantal representation = LMI

Once we have det F(x) = f(x), we would like to know whether

F closure {x € R™ : det F(x) >0} >e
{x € R™ : F(x) > 0}

Since f(e) = 1, it holds e € int F and F(e) = 0 so the represen-
tation must be definite for F to be expressed as an LMI

Under which conditions on f can we find such a definite repre-
sentation 7
Define the algebraic curve
C={rxeR": f(x) =0}
containing the boundary of F



Rigid convexity

Necessary condition for F to have a definite symmetric linear
determinantal, or LMI representation:

Any line passing through an interior point of F must intersect C
exactly d times (counting multiplicities and points at infinity)

Rigid convexity implies convexity

Strong result by Helton and Vinnikov (2002): the condition is
also sufficient in the plane, i.e. for n =2

Also sufficient forn >2 7



Cartesian ovals

| | | | | | | | | |
-15 -1 -0.5 0 0.5 1 15 2 25 3

B((z1+1)2+z254+1)—10(z1+1))?— 10(1(5111-I- 1)24+234+1)+12(z14+1)+1 >0



Cartesian ovals

-1.5 -1 -0.5 0 0.5 1 15 2 2.5 3

Inner oval is rigidly convex 'hence LMI representable



Constructive methods

Checking rigid convexity amounts to checking positive semidefi-
niteness of the Hermite matrix of polynomial p(x) for all x

Given f(x) and e, once we know that the set

F={zecR": f(x) >0}>e

IS rigidly convex, how can we systematically build symmetric ma-
trices F; such that

n
F={zecR": F(a;)zFo-I-ZfBiFiiO}
i=1

and so f(x) =det F(z) ? When/how can we enforce Fop =17

In the sequel we focus exclusively on the plane case (n = 2)
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Rational curves

An algebraic plane curve of genus zero, that is, with a maximal
number of singularities

{x cR? : f(x) = 0}
admits a rational parametrization

f1(t) _ Ja(2)
OO

with f;(t) real polys of real indeterminate t

r1(t) =

Degrees of f; do not exceed degree of f

Coeffs of f; chosen in (typically small) algebraic extension
of the coeff field of f



Determinantal representation follows from the resultant of the
two polys

g1(t, 1) fo(t) —z1(t) f1(t)
go(t, o) fo(t) — z2(t) fo(t)

with respect to t (variable to be eliminated)

Bezout matrix B:(g1, go) is symmetric and linear in z such that

det Bi(g91,92) = f(x)

hence F'(x) = B¢(g1,g>) is a valid symmetric linear determinantal
representation of f



Capricorn curve
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f(x) = m%(m% -+ x%) — 2(:1:% —+ a:% — :c2)2



1960 — 868z — 1924y —952 — 940z + 740y

Fe) = | 952~ 9400 +740y 776 + 540z + 476y

—168 + 180z + 180y —8 — 36x — 84y
] 56 — 4x — b2y —72 + 20x + 52y
—168 4+ 180x + 180y 56 — 4x — 52y
—8 — 36x — 34y —72 4+ 20x + 52y
40 + 60x + 92y 8 + 20x — 28y
8 + 20x — 28y 8 —4x — 4y ]

Definite around e = (0,1/2) hence LMI representable



Bean curve
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f(x) = :13‘1L + w%x% + mg — CU]_(CIJ% + w%)



Bean determinant

(1 w2 w1 x|
|z 1 ro 1 —x1
F(z) = rq o 0 0
22 1—2797 O 1—x1 |

Indefinite around e = (1/2,0)

Not rigidly convex hence not LMI representable
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When deg f(xz) = 3 the genus of f(xz) can be 0 (rational, or
singular cubic) or 1 (elliptic, or smooth cubic)

Homogeneize f(zg,x1,x0) = xof(£1,£2) define Hessian matrix
02 f ()
H(@) = |51
Li0%j 14 j=0,1,2

which is real symmetric linear, and Hessian

h(z) = det H(f(z))
which is cubic

An elliptic curve has 9 flexes z* (3 of which are real) satisfying

f(@®) =h(z") =0



Parametrized Hessian

f(x) and h(x) share the same flexes and we know a symmetric
linear determinantal representation for h(x), so use linear homo-
topy to find one for f(x) (thanks to Frédéric Han)

For t € R define parametrized Hessian

g(x,t) = det H(tf(x) + h(z))
and find t* satisfying
g(z™,t") = f(2¥)

at a real flex £* by solving equation of degree 3

T hree distinct determinantal representations not equivalent by
congruence transformation, one of which is definite hence LMI



Find a symmetric linear determinantal representation for

flz) =23 — a3 — a1

First build Hessian
h(z) = det H(f(z)) = 8(«3 + 3zgz% — 3z123)
Parametrized Hessian
g(t,z) =detH(tf(z)+h(x)) = 24t3xom%—576t2:{;8x1—|—- : -—|—110592x:{’
matches f(x) at flex xj = 0 for
t* € {0,24,—-24}

yielding the following three representations...



Elliptic curve

1
Fl(z) = | —ao
1

) 1 4 321
F2(z) =473 | —xo
-1+

) [ 1 — 321
3 — =

F>(x) =473 —XD

14+ x4

—x> T1
—x1 O
0 1

—1—x

1l —x
L2

—1+4 21 |

1l — 2

1421 |
L2
1+ 21
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A. C. Dixon described in 1902 an explicit construction of a sym-
metric linear determinantal representation of a plane algebraic
curve based on the knowledge of a contact curve

Given a curve f(x) = 0 of degree d, a contact curve g(x) =0 is
a curve of degree d — 1 touching f(z) =0 at 3d(d — 1) points

Once g(x) is given, a determinantal representation for f(x)
follows by simple linear algebra

Better illustrated with an example..



Adjoint matrix

Consider the elliptic curve
f(x) = 1—2371—37%—:8%-'-233:13:0

with (known) determinantal representation

1l = 0
Fle) =] x21 1 T
0O 2o 1—2x1

Consider its adjoint (or adjugate) matrix

[ 1 — 221 — m% x1(—=142x1) xz120
Viz)=F 1 (2)f(z) = | 21(=14 221) 1 — 214 — 5
I 1T —Io 1 — x% ]

which contains quadratic cofactors



Quotient ring

Since F(x)V(x) = f(x)I, the cofactors in a column of V(x)
generate a basis for the quotient ring R[x]/f(x)

1 24 0 11 1—2x1—:c% z1(—14+221) x170 |
r1 1 5 x1(—1 4 2x1) 1 —2xzq — 5 =
0 xp 1—2x1 || 12 —xD 1—:6%_
[ f(z) O 0 |
O f(x) O
0 0 f(z)




Net of contact curves

For all v € R3 the conic
g(z,v) = ’UTV(IE)’U =0

is a contact curve touching f(x) = 0 at 3 points

Here are some random contact conics for our cubic..



Contact curves
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Contact curves
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Contact parabola
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Filling in the adjoint

_1—2:101—:0% 7?77
Vix) = ? 7
? 77

Let (1,1) be the contact parabola



Filling in the adjoint

1 — 211 — :c% 7?7 7]
V)= | 21(=1+2x1) ? 7?
r1To s

Build basis for quotient ring R[z]/f(x)




Filling in the adjoint

1 —2xq1 — x% z1(—=14+2x1) z1xo |
V(a:) — 5131(—1 —|— 2$1) ? ?
] r1To ? [

All these contact conics share common touching points



Filling in the adjoint

1 — 2% — x% z1(—14+2x1) z1xo |
V(CB) — :Bl(—l + Qxl) 1 — 2:131 ?
I x1To ? ?

(2,2) shares contact points with (1,1) and (2,1)



Filling in the adjoint

1 —2xq — x% r1(—14+221) x120 |
V(:B) — 2131(—1 + 2$1) 1 — 2:61 ?
I T1xo ? 1 — a:% |

(3,3) shares contact points with (1,1) and (3,1)



Filling in the adjoint

1 —2xq — x% r1(—14+221) x120 |
V(z) = | z1(—=1 4+ 2x1) 1 —2xq — T
] T1TD —Io 1 — :13% ]

(3,2) shares contact points with (2,2) and (3,3)



Inverting the adjoint

1 = O

fF@V @)=z 1 T
i 0 o 1—2:1’}1_

Invert adjoint matrix to recover linear representation




Given f(x) of degree d, and a contact curve g(xz) of degree d—1:
e let g(x) be a diagonal entry in V(x)

e derive the whole row and column in V(x) by generating a basis
of the quotient ring R[z]/f(x)

e derive the remaining entries in V(x) by solving linear equations

in the quotient ring
e compute F(z) = f42(z)V(z) !

A Kkey issue remains: how can we algebraically and systematically
find a contact curve g(z) 7

Impact of the choice of the contact points 7

Definiteness of the representation 7



For genus zero curves:
e how many distinct parametrizations 7
e how can we detect/enforce definiteness ?

For positive genus curves:

e how can we find a contact curve 7

e how can we detect/enforce definiteness ?

e for quartics, should we use the bitangents (Edge 1935) 7

e can we singularize the curve (inverse quadratic mappings of
Hilbert/Hurwitz to solve singularities) and use the Bezoutian 7



Example of 3D LMI set

f={x€R3:

L1
L2

L1 X2
1 x3
r3 1




