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LMI

Linear matrix inequality

F (x) = F0 +
n∑

i=1

xiFi � 0

where Fi are given symmetric real matrices and constraint � 0

means positive semidefinite (all eigenvalues real nonnegative)

Arise in control theory (Lyapunov 1890, Willems 1971, Boyd et

al. 1994), combinatorial optimization, finance, structural me-

chanics, and many other areas

Key property = convex in x



Semidefinite programming

Decision problem

minx
∑

i cixi
s.t. F0 +

∑
i xiFi � 0

Optimization over LMIs = semidefinite programming, versatile

generalization of linear (and convex quadratic) programming to

the convex cone of positive semidefinite matrices

At given accuracy can be solved in polynomial time using interior-

point methods (Nesterov, Nemirovski 1994)

Many public-domain solvers available
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Geometry of LMI sets

How does an LMI set

F = {x ∈ Rn : F (x) = F0 +
n∑

i=1

xiFi � 0}

look like in Euclidean space ?

Matrix F (x) is PSD iff its diagonal minors fi(x) are nonnegative

So the LMI set can be described as

F = {x ∈ Rn : fi(x) ≥ 0, i = 1,2, . . .}

a convex closed basic semialgebraic set



Semialgebraic formulation

For an d-by-d matrix F (x) we have 2d − 1 diagonal minors

A simpler criterion follows from the fact that a poly t 7→ f(t) =∑
k fd−ktk =

∏
k(t − tk) which has only real roots satisfies tk ≤ 0

iff fk ≥ 0

Apply to characteristic poly f(t, x) = det(tId+F (x)) =
∑d

k=0 fd−k(x)t
k

which is monic, i.e. f0(x) = 1

Only d poly ineqs fk(x) ≥ 0 to be checked

Polys fk(x) are sums of principal minors of F (x) of order k

or equivalently sums of k-term-products of eigenvalues of F (x)



Example of 2D LMI feasible set

F (x) =

 1− x1 x1 + x2 x1
x1 + x2 2− x2 0

x1 0 1 + x2

 � 0

System of 3 polynomial inequalities fi(x) ≥ 0

f1(x) = trace F (x) = 4− x1 ≥ 0



f2(x) = 5− 3x1 + x2 − 2x2
1 − 2x1x2 − 2x2

2 ≥ 0
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f3(x) = detF (x) = 2−2x1+x2−3x2
1−3x1x2−2x2

2−x1x2
2−x3

2 ≥ 0
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LMI set = intersection of level-sets fk(x) ≥ 0, k = 1,2,3
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Boundary of LMI region shaped by determinant
Other polys only isolate convex connected component



LMI set or not ?
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LMI

x1x2 ≥ 1 and x1 ≥ 0

⇐⇒

[
x1 1
1 x2

]
� 0



LMI set or not ?
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LMI

x2 ≥ x2
1

⇐⇒

[
1 x1
x1 x2

]
� 0



LMI set or not ?
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LMI

x2
1 + x2

2 ≤ 1

⇐⇒

[
1 + x1 x2

x2 1− x1

]
� 0



LMI set or not ?
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NOT LMI: not convex
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LMI set or not ?
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NOT LMI: not basic semialgebraic
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LMI set or not ?
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NOT LMI: not connected
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LMI set or not ?
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LMI

1− 2x1 − x2
1 − x2

2 + 2x3
1 ≥ 0 and x1 ≤ 1

2

⇐⇒

 1 x1 0
x1 1 x2
0 x2 1− 2x1

 � 0



LMI set or not ?
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NOT LMI: not rigidly convex
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Determinantal representation

Consider the non-empty semialgebraic set

F = {x ∈ Rn : f(x) ≥ 0}
where f(x) is a given polynomial of degree d

Without loss of generality, assume that we are given a point e

(typically the origin) satisfying f(e) = 1

Since the boundary of an LMI set is shaped by a determinant,
can we find symmetric real matrices Fi such that

F (x) = F0 +
n∑

i=1

xiFi, det F (x) = f(x)

So we would like to find a linear symmetric determinantal
representation for polynomial f(x)



Definite determinantal representation = LMI

Once we have det F (x) = f(x), we would like to know whether

F = closure {x ∈ Rn : det F (x) > 0} 3 e
= {x ∈ Rn : F (x) ≥ 0}

Since f(e) = 1, it holds e ∈ int F and F (e) � 0 so the represen-
tation must be definite for F to be expressed as an LMI

Under which conditions on f can we find such a definite repre-
sentation ?

Define the algebraic curve

C = {x ∈ Rn : f(x) = 0}
containing the boundary of F



Rigid convexity

Necessary condition for F to have a definite symmetric linear

determinantal, or LMI representation:

Any line passing through an interior point of F must intersect C
exactly d times (counting multiplicities and points at infinity)

Rigid convexity implies convexity

Strong result by Helton and Vinnikov (2002): the condition is

also sufficient in the plane, i.e. for n = 2

Also sufficient for n > 2 ?



Cartesian ovals
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Cartesian ovals
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Constructive methods

Checking rigid convexity amounts to checking positive semidefi-
niteness of the Hermite matrix of polynomial p(x) for all x

Given f(x) and e, once we know that the set

F = {x ∈ Rn : f(x) ≥ 0} 3 e

is rigidly convex, how can we systematically build symmetric ma-
trices Fi such that

F = {x ∈ Rn : F (x) = F0 +
n∑

i=1

xiFi � 0}

and so f(x) = det F (x) ? When/how can we enforce F0 = I ?

In the sequel we focus exclusively on the plane case (n = 2)
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Rational curves

An algebraic plane curve of genus zero, that is, with a maximal

number of singularities

{x ∈ R2 : f(x) = 0}

admits a rational parametrization

x1(t) =
f1(t)

f0(t)
, x2(t) =

f2(t)

f0(t)

with fi(t) real polys of real indeterminate t

Degrees of fi do not exceed degree of f

Coeffs of fi chosen in (typically small) algebraic extension

of the coeff field of f



Bezoutian

Determinantal representation follows from the resultant of the

two polys

g1(t, x1) = f0(t)− x1(t)f1(t)
g2(t, x2) = f0(t)− x2(t)f2(t)

with respect to t (variable to be eliminated)

Bezout matrix Bt(g1, g2) is symmetric and linear in x such that

det Bt(g1, g2) = f(x)

hence F (x) = Bt(g1, g2) is a valid symmetric linear determinantal

representation of f



Capricorn curve
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Capricorn LMI

F (x) =


1960− 868x− 1924y −952− 940x + 740y
−952− 940x + 740y 776 + 540x + 476y
−168 + 180x + 180y −8− 36x− 84y

56− 4x− 52y −72 + 20x + 52y

−168 + 180x + 180y 56− 4x− 52y
−8− 36x− 84y −72 + 20x + 52y
40 + 60x + 92y 8 + 20x− 28y
8 + 20x− 28y 8− 4x− 4y


Definite around e = (0,1/2) hence LMI representable



Bean curve
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Bean determinant

F (x) =


x1 x2 x1 x2
x2 1 x2 1− x1
x1 x2 0 0
x2 1− x1 0 1− x1



Indefinite around e = (1/2,0)

Not rigidly convex hence not LMI representable
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Cubics

When deg f(x) = 3 the genus of f(x) can be 0 (rational, or
singular cubic) or 1 (elliptic, or smooth cubic)

Homogeneize f(x0, x1, x2) = x3
0f(x1

x0
, x2
x0

), define Hessian matrix

H(f(x)) =

[
∂2f(x)

∂xi∂xj

]
i,j=0,1,2

which is real symmetric linear, and Hessian

h(x) = det H(f(x))

which is cubic

An elliptic curve has 9 flexes x∗ (3 of which are real) satisfying

f(x∗) = h(x∗) = 0



Parametrized Hessian

f(x) and h(x) share the same flexes and we know a symmetric
linear determinantal representation for h(x), so use linear homo-
topy to find one for f(x) (thanks to Frédéric Han)

For t ∈ R define parametrized Hessian

g(x, t) = det H(tf(x) + h(x))

and find t∗ satisfying

g(x∗, t∗) = f(x∗)

at a real flex x∗ by solving equation of degree 3

Three distinct determinantal representations not equivalent by
congruence transformation, one of which is definite hence LMI



Elliptic curve

Find a symmetric linear determinantal representation for

f(x) = x3
1 − x2

2 − x1

First build Hessian

h(x) = det H(f(x)) = 8(x3
0 + 3x0x2

1 − 3x1x2
2)

Parametrized Hessian

g(t, x) = detH(tf(x)+h(x)) = 24t3x0x2
1−576t2x2

0x1+· · ·+110592x3
1

matches f(x) at flex x∗0 = 0 for

t∗ ∈ {0,24,−24}

yielding the following three representations...



Elliptic curve

F1(x) =

 1 −x2 x1
−x2 −x1 0
x1 0 1



F2(x) = 4−
1
3

 1 + 3x1 −x2 −1 + x1
−x2 −1− x1 −x2

−1 + x1 −x2 1− x1



F3(x) = 4−
1
3

 1− 3x1 −x2 1 + x1
−x2 1− x1 x2

1 + x1 x2 1 + x1


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Dixon’s construction

A. C. Dixon described in 1902 an explicit construction of a sym-

metric linear determinantal representation of a plane algebraic

curve based on the knowledge of a contact curve

Given a curve f(x) = 0 of degree d, a contact curve g(x) = 0 is

a curve of degree d− 1 touching f(x) = 0 at 1
2d(d− 1) points

Once g(x) is given, a determinantal representation for f(x)

follows by simple linear algebra

Better illustrated with an example..



Adjoint matrix

Consider the elliptic curve

f(x) = 1− 2x1 − x2
1 − x2

2 + 2x3
1 = 0

with (known) determinantal representation

F (x) =

 1 x1 0
x1 1 x2
0 x2 1− 2x1



Consider its adjoint (or adjugate) matrix

V (x) = F−1(x)f(x) =

 1− 2x1 − x2
2 x1(−1 + 2x1) x1x2

x1(−1 + 2x1) 1− 2x1 −x2
x1x2 −x2 1− x2

1


which contains quadratic cofactors



Quotient ring

Since F (x)V (x) = f(x)I, the cofactors in a column of V (x)

generate a basis for the quotient ring R[x]/f(x) 1 x1 0
x1 1 x2
0 x2 1− 2x1


 1− 2x1 − x2

2 x1(−1 + 2x1) x1x2
x1(−1 + 2x1) 1− 2x1 −x2

x1x2 −x2 1− x2
1

 =

 f(x) 0 0
0 f(x) 0
0 0 f(x)





Net of contact curves

For all v ∈ R3 the conic

g(x, v) = vTV (x)v = 0

is a contact curve touching f(x) = 0 at 3 points

Here are some random contact conics for our cubic..



Contact curves
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Contact curves
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Contact curves
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Contact curves
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Contact parabola
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Filling in the adjoint

V (x) =

 1− 2x1 − x2
2 ? ?

? ? ?
? ? ?


Let (1,1) be the contact parabola



Filling in the adjoint

V (x) =

 1− 2x1 − x2
2 ? ?

x1(−1 + 2x1) ? ?
x1x2 ? ?


Build basis for quotient ring R[x]/f(x)



Filling in the adjoint

V (x) =

 1− 2x1 − x2
2 x1(−1 + 2x1) x1x2

x1(−1 + 2x1) ? ?
x1x2 ? ?


All these contact conics share common touching points



Filling in the adjoint

V (x) =

 1− 2x1 − x2
2 x1(−1 + 2x1) x1x2

x1(−1 + 2x1) 1− 2x1 ?
x1x2 ? ?


(2,2) shares contact points with (1,1) and (2,1)



Filling in the adjoint

V (x) =

 1− 2x1 − x2
2 x1(−1 + 2x1) x1x2

x1(−1 + 2x1) 1− 2x1 ?
x1x2 ? 1− x2

1


(3,3) shares contact points with (1,1) and (3,1)



Filling in the adjoint

V (x) =

 1− 2x1 − x2
2 x1(−1 + 2x1) x1x2

x1(−1 + 2x1) 1− 2x1 −x2
x1x2 −x2 1− x2

1


(3,2) shares contact points with (2,2) and (3,3)



Inverting the adjoint

f(x)V −1(x) =

 1 x1 0
x1 1 x2
0 x2 1− 2x1


Invert adjoint matrix to recover linear representation



Dixon’s construction

Given f(x) of degree d, and a contact curve g(x) of degree d−1:
• let g(x) be a diagonal entry in V (x)
• derive the whole row and column in V (x) by generating a basis
of the quotient ring R[x]/f(x)
• derive the remaining entries in V (x) by solving linear equations
in the quotient ring
• compute F (x) = fd−2(x)V (x)−1

A key issue remains: how can we algebraically and systematically
find a contact curve g(x) ?

Impact of the choice of the contact points ?

Definiteness of the representation ?



Open problems

For genus zero curves:

• how many distinct parametrizations ?

• how can we detect/enforce definiteness ?

For positive genus curves:

• how can we find a contact curve ?

• how can we detect/enforce definiteness ?

• for quartics, should we use the bitangents (Edge 1935) ?

• can we singularize the curve (inverse quadratic mappings of

Hilbert/Hurwitz to solve singularities) and use the Bezoutian ?



Example of 3D LMI set

F = {x ∈ R3 :

 1 x1 x2
x1 1 x3
x2 x3 1

 � 0}


