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Monadic second-order logic : expression of properties, queries, optimization

   functions, number of configurations.

Mainly useful for tree-structured graphs  (Second-order  logic  is  useless)

Two  types of questions :

Checking  G  =  ϕ  for fixed formula  ϕ, given G , ( Model checking )

Deciding if   ∃ G,  G ∈ C, G  = ϕ  for fixed C, given  formula  ϕ.

Tools  to  be presented

Algebraic setting  for tree  structuring of graphs

Recognizability  =  finite congruence  ≡  inductive computability

≡  finite  deterministic  automaton  on terms

Fefermann-Vaught : MS definability  ⇒  recognizability.

Verification of graph properties.
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History : Confluence of 4 independent research directions,  now  intimately

related :

1. Polynomial  algorithms for NP-complete and other hard problems on particular

classes of graphs, and especially hierarchically structured ones : series-parallel

graphs, cographs, partial k-trees, graphs or hypergraphs of tree-width < k, graphs of

clique-width < k.

2. Excluded minors and related notions of forbidden configurations (matroid

minors, « vertex-minors »).

3. Decidability of Monadic Second-Order logic on classes of  finite  graphs, and on

infinite graphs.

4. Extension to graphs and hypergraphs of the main concepts of Formal

Language Theory : grammars, recognizability, transductions, decidability questions.
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Summary

1. Introduction

Extension of Formal  Language Theory notions

2. Context-free  sets defined  by  equation  systems.

3. The graph algebras  HR  and  VR.  Tree-width.

Algorithmic  applications  :

4. Inductive computations and recognizability; fixed-parameter  tractable algorithms.

5. Monadic second-order logic defines inductive  properties and functions

Formal  language  theory  extended to graphs

6. Closure and decidability properties ; generation  of classes of graphs  by  monadic

second-order  transductions.

7. Graph rewriting.
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Introduction  :  An  overview  chart :

Graph                   "Context-free"

operations             sets  of  graphs

                                                        Language  theory

                                                             for   graphs

                              Recognizable   

Monadic  2nd          sets  of graphs Mon. 2nd order transductions

order  logic

                                                                Fixed  parameter

                                                                tractable algorithms
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Key  concepts of FLT  and  their  extensions

Languages Graphs

Algebraic structure :
monoid  (X*,*,ε)

Algebras based on graph operations : ⊕, ⊗, //
quantifier-free definable operations

Algebras :   HR,   VR
Context-free languages :

Equational subsets of (X*,*,ε)
Equational sets of the
algebras     HR,    VR

Regular languages :
Finite  automata  ≡

Finite congruences   ≡
Regular expressions   ≡

Recognizable sets
of the algebras

HR,  VR
defined by congruences

≡   Monadic Second-order
definable sets of words or terms

∪
Monadic Second-order definable sets of graphs

Rational and other types of
transductions

Monadic Second-order transductions
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Equational  (context-free) sets

Equation  systems =  Context-Free  (Graph)  Grammars
         in  an  algebraic  setting

In the case of  words,   the  set of context-free  rules

S  → a S T ;    S  → b  ;  T  → c T T T ;   T  → a

is equivalent to  the system  of  two set  equations:

S  =  a S T   ∪   { b }

T  =  c T T T    ∪        { a }

where S is the language generated  by S      (idem for T and T).



8

For  graphs  (or  other  objects)  we consider  systems of equations like:

S  =  f( k( S ), T  )  ∪ { b }

T  =  f( T , f( g(T ), m( T ))) ∪ { a }

where  f   is a binary operation,  g, k, m   are unary operations on  graphs,

a, b   denote  basic graphs  (up  to  isomorphism).

An  equational set  is  a component  of the least  (unique)  solution  of such  an

equation system. This  is  well-defined in any  algebra.
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Logical  expression of graph properties

Cf.  Descriptive  complexity, theory of data bases.

A  graph  G  can be given  as  a logical structure

< VG , edgG(.,.) >.

Typical properties expressible  by   First-order formulas :

G  has no loop, or  has degree at most 5,  or  has indegree at most 3.

G has an induced subgraph  isomorphic to a fixed finite graph (useful for

graph rewriting systems)

Such  properties  are  characterized  (Gaifman) as  local properties.
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Monadic Second-Order (MS) Logic
=  First-order logic on power-set structures

=  First-order logic extended with (quantified) variables
denoting subsets  of the domains.

MS properties :   transitive closure,  properties of paths, connectivity,

planarity  (via Kuratowski, uses connectivity),   k-colorability.

Examples  of formulas for   G =  < VG , edgG(.,.) >, undirected

Non connectivity :
∃X ( ∃x ∈ X  ∧  ∃y ∉ X  ∧  ∀u,v (u ∈ X  ∧  edg(u,v) ⇒ v ∈ X)  )

2-colorability (i.e.  G  is   bipartite) :
∃X ( ∀u,v (u ∈ X  ∧  edg(u,v) ⇒ v ∉ X) ∧ ∀u,v (u ∉ X  ∧  edg(u,v) ⇒ v ∈ X) )
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Edge set  quantifications

Provably  more  powerful.

Incidence  graph  of  G undirected,  Inc(G) = < VG ∪ EG, incG(.,.) >.

incG(v,e)   ⇔   v is a vertex of edge  e.

Monadic second-order  (MS2)  formulas  written  with  inc   can use quantifications
on sets of edges.

Existence  of a  Hamiltonian circuit  is expressible  by an  MS2  formula, but not by an
MS  formula.

Theorem : MS2 formulas are no more powerful  than  MS  formulas  :
for graphs  of degree  < d,  or of  tree-width < k,
or for planar graphs,  or for  graphs without some fixed H as a minor,
or  graphs of  average  degree  <  k  (uniformly k-sparse).
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The  two types  of questions we would like to solve :

1) Checking  G  =  ϕ  for fixed  formula  ϕ, given G , (Model checking)

Polynomial time  O(ns)  for  each  first-order  formula  with s variables.

Linear  for  each  first-order  formula  on graphs of bounded degree.

NP-complete  problems  (3-coloring)  can be expressed by  MS  formulas.

Linear  for  each  MS   formula  on graphs of bounded tree-width.

2)   Deciding if   ∃ G, G ∈ C, G  = ϕ  for fixed C, given  formula  ϕ.

Even for first-order  formulas, undecidable  on the class of all finite graphs, and

even of all finite planar  graphs of degree at most 3.

Decidable  for MS  formulas with edge set quantifications  on the class  of graphs

of  tree-width < k,  and for each fixed k  (untractable). Also  on  certain context-free

sets of graphs  (defined by HR grammars).
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Tree-decompositions  and their  algebraic  definition.
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Tree-width

Tree-decomposition of  width  k :   k+1 = maximum  size  of a  box

Tree-width : twd(G) = minimum  width of a  tree-decomposition

Trees  have tree-width 1,

Kn  has tree-width n-1,

the n x n grid  has tree-width  n

Outerplanar  graphs  have  tree-width  at  most  2.
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HR operations : Origin :  Hyperedge Replacement hypergraph grammars ; associated complexity

measure : tree-width

Graphs have  distinguished vertices called sources,  pointed  to  by labels from

a  set of size k :    {a, b, c,  ..., h}.

Binary operation(s)  : Parallel  composition

G // H    is   the  disjoint  union of  G  and  H and sources  with  same  label  are   fused.

(If G  and  H are  not disjoint, one  first  makes  a  copy of  H disjoint from  G).
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Unary operations   :    Forget   a  source  label

Forgeta(G)    is  G     without  a-source  : the  source  is  no longer

                                   distinguished ; it is  made  "internal".

Source renaming :

Rena,b(G)  exchanges  source  names  a  and b

(replaces  a  by  b   if  b is not the name  of a  source)

Nullary operations denote  basic graphs :  the connected graphs with at most one edge. For

dealing with hypergraphs one takes more nullary symbols for denoting hyperedges.

More precise algebraic framework : a many sorted algebra where each finite set of source

labels is a sort. The above operations are  overloaded.
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Proposition:  A  graph  has  tree-width  ≤  k  if and only if  it  can  be  constructed   from

basic  graphs  with   ≤  k+1  labels  by  using  the  operations    // , Rena,b  and  Forgeta .

Example : Trees are of tree-width 1, constructed with two source labels, r  (root) and n  (new root):

Fusion of two trees at their roots  :

Extension of a tree by parallel composition

with a new edge,  forgetting the old root,

making   the "new root" as current root :

E  =  r  •_________•  n

Renn,r (Forgetr (G // E))
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From  an algebraic  expression  to  a   tree-decomposition

Example :  cd // Rena,c (ab // Forgetb(ab // bc))

Constant  ab  denotes  a  directed edge from  a   to  b.

                         The tree-decomposition associated  with this term.
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VR    operations

Origin : Vertex Replacement graph grammars

Associated complexity measure :   clique-width, has no  combinatorial  characterization  but is

defined in terms of  few very simple  graph operations  (whence easy  inductive proofs).

Equivalent notion : rank-width (Oum and Seymour) with better structural and algorithmic

properties.

Graphs are simple, directed or not.

k   labels  :  a , b , c,  ..., h.  Each vertex has one and only  one label ;

a label p may label several vertices, called the   p-ports.

One  binary operation:   disjoint  union    :   ⊕
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Unary  operations:  Edge addition denoted  by  Add-edga,b

Add-edga,b(G)   is  G   augmented with (un)directed edges  from every   a-port   to every

b-port.

     G   Add-edga,b(G)
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Vertex  relabellings :     Relaba,b(G) is  G with every vertex labelled by a   relabelled into b

Basic graphs  are those with a single vertex.

Definition:  A  graph  G  has  clique-width  ≤ k  ⇔ it can be constructed  from basic graphs

by means  of  k  labels  and   the  operations ⊕, Add-edga,b   and   Relaba,b  

Its (exact) clique-width,  cwd(G),   is the   smallest  such  k.
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Proposition :  (1) If  a  set of  simple graphs  has  bounded  tree-width, it has  bounded

clique-width, but  not  vice-versa.

(2) Unlike tree-width, clique-width  is  sensible to edge directions :  Cliques have clique-

width  2, tournaments have unbounded clique-width.

(3) a. Deciding  “Clique-width < 3” is a polynomial problem. (Habib et al.)

     b. The complexity (polynomial or NP-complete) of  “Clique-width = 4” is unknown.

     c.  It is  NP-complete  to  decide  for given k and G  if  cwd(G) < k. (Fellows et al.)

     d.  There exists  a cubic approximation algorithm  that for given k and G

answers (correctly) :   either  that cwd(G) >k,

or  produces  a  clique-width algebraic term  using  224k labels. (Oum)

This  yields  Fixed Parameter Tractable  algorithms  for many hard problems.
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Example : Cliques have clique-width 2.

Kn  is   defined  by   tn where  tn+1  =   Relabb,a( Add-edga,b(tn  ⊕  b))

Example :  Cographs  are generated  by  ⊕  and  ⊗  defined by :

G ⊗ H   =   Relabb,a ( Add-edga,b (G ⊕ Relaba,b(H))

              = G ⊕ H  with  “all edges”  between  G and H.
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Algorithmic  applications

Fixed parameter  tractability  results

Theorem (B.C.) :  For  graphs  of  tree-width  ≤  k ,

each monadic  second-order  property, (ex. 3-colorability),

each monadic  second-order optimization function, (ex. distance),

each monadic  second-order  counting  function, (ex. #  of paths)

       is  evaluable in  linear  time  with  help  of a  result  by  Bodlaender  (1996).

Similar results  hold  for clique-width  bounded  graphs  and  monadic

second-order  logic without edge set quantifications  with  cubic  time

because  of the parsing  step.
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Applications  to  the  decidability  of  logical  formulas

on classes  of graphs
Theorem (B.C.) :  The  following  problems  can be solved by an algorithm :

Twd-MS2 : Input : k  and  a  monadic  second-order formula (with edge set quantifications).

Questions :  Does the corresponding property hold  for  graphs  of  tree-width  ≤  k ?

Does the corresponding property hold  some  graph  of  tree-width  ≤  k ?

(tree-width  ≤  k   can be replaced  by  :  in a  given  HR-equational  set).

Cwd-MS : Input  : k  and  a  monadic  second-order formula (without edge set

quantifications).

Questions :  Does the corresponding property hold  for  graphs  of  clique-width  ≤  k ?

Does the corresponding property hold  some  graph  of  clique-width  ≤  k ?

(clique-width  ≤  k   can be replaced  by  :  in a a given  VR-equational  set).

(Limited) application : Checking  the 4-Color Theorem for graphs of cwd < k.
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Inductive  computations

Example : Series-parallel graphs, defined  as graphs with sources 1 and 2,

generated from  e   = 1             2    and the operations //  (parallel-composition)  and

series-composition   defined  from other operations by :

G • H =  Forget3(Ren2,3 (G) // Ren1,3 (H))

Example  :

  1 •        G              •        H                            •  2

    3

   1   •            • 2
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Inductive  proofs :

1) G, H connected implies :  G//H   and   G • H   are  connected, (induction)

e   is connected (basis) :

⇒      All  series-parallel graphs are connected.

2)  It is not true that :

G  and  H  planar implies :  G//H is  planar  (K5 = H//e).

A stronger property for induction :

G has a planar embedding with the sources in the same “face”

⇒      All  series-parallel graphs are planar.
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Inductive  computation  :  Test  for 2-colorability

1) Not all  series-parallel  graphs are  2-colorable  (see  K3)
2) G, H  2-colorable does not imply that G//H is 2-colorable  (because  K3=P3//e).

3) One can check 2-colorability  with 2 auxiliary  properties :

    Same(G) =  G is 2-colorable with sources of the same color,
Diff(G) =  G is 2-colorable with sources  of different colors

and by  using rules : 
Diff(e) =  True  ;  Same(e) = False
Same(G//H)  ⇔ Same(G) ∧ Same(H)
Diff(G//H) ⇔  Diff(G) ∧  Diff(H)
Same(G•H)  ⇔  (Same(G) ∧ Same (H)) ∨ (Diff(G) ∧ Diff(H))
Diff(G•H)  ⇔  (Same(G) ∧ Diff(H)) ∨ (Diff(G) ∧  Same(H))

We can compute for every SP-term t, by induction on the structure of  t the pair of

Boolean values (Same(Val(t)) ,  Diff(Val(t)) ). We  get  the answer  for  G = Val(t)  (the

graph  that  is  the value  of t )  regarding 2-colorability.



29

Important facts  :

1) The existence of properties  forming  an inductive set  (w.r.t. operations  of F)

is equivalent  to recognizability in  the  considered F-algebra.

2) The simultaneous computation of m inductive properties can be implemented

by a "tree" automaton with  2m  states working on terms  t. This  computation

takes  time  O( t ).

3) An inductive set of properties can be constructed (at least theoretically)  from

every monadic-second order formula.

4) This  result extends  to the computation of values  (integers)  defined  by

monadic-second order formulas.
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Definition :  A set  L  of words,  of trees,  of graphs or relational structures   is
Monadic Second-Order  (MS)  definable  iff

L  =  { S   /    S  =  ϕ }  for an MS formula  ϕ

Theorem  :  (1) A  language (set  of words or  finite  terms ) is
recognizable   ⇔   it  is  MS  definable

(2) A set  of finite  graphs  is  VR-recognizable    
⇐  it  is  MS  definable

(3) A set  of finite  graphs  is  HR-recognizable   
 ⇐  it  is  MS2 definable

Proofs:
(1) Doner, Thatcher, Wright, see W. Thomas, Handbook formal languages, vol.3.
(2) (3)  There  are  two  possible proofs . I sketch  the  informative  one.
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Basic  facts  for   (2) :

Let  F  consist  of   ⊕  and  unary  quantifier-free  definable  operations f.

For every  MS  formula  ϕ  of quantifier-height  k, we  have

(a) for  every   f , one can construct  a formula  f#(ϕ)   such that :   

 f(S)  =  ϕ  ⇔  S  =  f#(ϕ)

(b) (Hanf, Fefermann  and  Vaught, Shelah) one can construct formulas  ψ1,…,ψn,θ1,…,θn

such that :

S⊕T  =  ϕ  ⇔  for some i,  S  =  ψi  ∧ T  =  θ i

where f#(ϕ), ψ1,…,ψn, θ1,…,θn  have quantifier-height  <  k.

(c) Up  to  equivalence, there  are  finitely many  formulas  of quantifier-height  <  k   forming a set  Φk.

One builds an automaton with states the  subsets of  Φk : the MS-theories of quantifier-height < k of

the graphs defined by the subterms of  the term  to be processed.
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8. 
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Graph  Rewriting

1) graph  rewriting  rules  :  local  graph  transformations

2) grammars  based  on  graph  rewriting rules
- either  context-free  : there are  2  types :

-- hyperedge  replacement  rewriting  rules, fairly
manageable, equivalent to  HR-equation  systems
-- vertex  replacement, very complicated,
equivalent  to  VR-equation  systems

- or more general :  hard to  obtain general  results

3) possible  applications :
- graph  properties  invariant  under application of  local  graph

transformations,
- verification of programs with  complex data structures and

pointers.
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Example : Series-parallel graphs
 defined  as the set  of  graphs with sources 1 and 2,

generated from  e   = 1           2  and the operations //  (parallel-composition)  and

series-composition   defined  from other operations by :

G • H =  Forget3(Ren2,3 (G) // Ren1,3 (H))

  1 •        G              •        H                            •  2               

      3

Equation  :  S  =  S//S  ∪ S•S  ∪  e

Rewriting  rules   1    S    2   1    S    .    S     2

S

1    S    2      1        S        2   ;      1    S    2         1           2
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Local  graph  transformations  :

Rule  :  L    R  , L   and  R  are  graphs  with  same  source names.

Application  of the rule :

G  H      if       G = ForgetAll(K//L)  and  H = ForgetAll(K//R)

for  some  graph K  with same source  names  as L,R.

Intuition : in G, a subgraph isomorphic to L is replaced by R ; the "gluing

vertices"  are  sources.
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Questions  to  ask :

For  a  property P :

1) Is it true that  if  G satisfies P, and L R is applicable, the resulting

graph satisfies P?

If P  is  first-order expressible or monadic second-order

expressible, then this is  decidable on graphs of tree-width < k, for

each k.

2) Is it true  that all graphs derivable  from G by a given  finite  set of rules

satisfy P ?

One must give more  hypotheses.
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Monadic  second-order  transductions

STR(Σ):   the set of finite  Σ-relational  structures (or finite directed ranked Σ-hypergraphs).

MS  transductions  are  multivalued mappings  :     τ  : STR(Σ)  STR(Γ)

            S                 T  =  τ (S)
where   T  is  :

a) defined by  MS formulas

b) inside  the  structure:  S ⊕ S ⊕ ... ⊕ S
(fixed  number  of disjoint "marked" copies of S)

c) in terms  of "parameters", subsets  X1, …,Xp   of  the  domain  of  S.
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Proposition  :  The  composition  of  two   MS  transductions  is  an  MS

transduction.

Remark  :   For  each tuple of parameters X1, …,Xp   satisfying  an MS  property, T is
uniquely defined.   τ  is multivalued  by  the  different choices of parameters.

Examples : (G,{x})        the connected  component containing x.

(G,X,Y)         the minor  of G  resulting from  contraction of edges in X  and deletion of
edges  and vertices  in Y.
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Example  of  an  MS  transduction   (without parameters) : The  square  mapping
δ  on  words:  u  →   uu

For    u  =    aac, we  have     S •  →  • → • 
           a      a      c      

S ⊕ S  •  →  • → •             •  →  • → •

a       a     c             a        a     c
p1     p1    p1           p2      p2    p2

δ(S) •  →  • → •  →  • → • →  •

a        a      c        a      a        c

In δ(S) we  redefine Suc (i.e., →  ) as  follows :

Suc(x,y) :  ⇔   p1 (x) & p1 (y) & Suc(x,y)   v p2 (x) & p2 (y) & Suc(x,y)
 v p1 (x) & p2 (y) & "x has no  successor"  &   "y has no  predecessor"

We also  remove  the  "marker" predicates p1, p2.
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The fundamental property of MS  transductions :

S                      τ (S)

τ #(ψ)                ψ

Every  MS  formula  ψ  has  an effectively  computable  backwards  translation τ #(ψ),
an MS formula, such that :

S   =  τ #(ψ)    iff    τ (S)   =  ψ

The verification of ψ  in  the object structure τ(S)  reduces  to  the  verification  of
τ #(ψ)   in  the  given structure S.

Intuition : S  contain all necessary information to describe  τ(S) ;  the MS properties of τ(S)
are expressible by MS formulas in S

Consequence : If L ⊆ STR(Σ) has a decidable  MS satisfiability problem,  so has  its image
under  an MS  transduction.
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Other results 
 1) A set  of graphs  is VR -equational  iff  it is the image of  (all) binary trees under an  MS
transduction.   VR-equational  sets  are  stable  under  MS-transductions.

A  set  of graphs has bounded clique-width  iff  it is  the image  of  a  set  of binary
trees  under  an MS transduction.

2) A  set  of graphs is HR-equational   iff  it is  the image  of   (all) binary trees  under  an
MS2 transduction.

HR-equational  sets  are  stable under  MS2-transductions.

A  set  of graphs has bounded tree-width  iff  it is  the image  of  a  set  of binary trees
under  an MS2 transduction.
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Relationships  between  algebraic  and  logical  notions

Algebraic
notions

Algebraic
characterizations

Logical
characterizations

Closure
properties

union,  ∩ Rec
equation systems MS-trans(Trees) homoEQ
Val(REC(Terms)) MS-trans

Boolean opns
congruences MS-def ⊂ REC homo-1REC

MS-trans-1

Signatures  for  graphs and hypergraphs :

HR : graphs  and  hypergraphs with “sources”
VR : graphs with  vertex  labels (“ports”)
VR+ : VR  with quantifier-free operations  (ex. edge complement)
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Links between MS logic and combinatorics:

Seese’s  Theorem  and Conjecture

Theorem (Seese 1991): If a set of graphs  has  a decidable MS2 satisfiability

problem, it has  bounded tree-width.

Conjecture (Seese 1991): If a set of graphs  has  a decidable MS satisfiability

problem, it  is  the  image  of a set of trees under an MS  transduction,

equivalently, has  bounded clique-width.

Theorem (B.C., S. Oum 2004): If a set of graphs has a decidable C2MS

satisfiability problem, it has  bounded clique-width.
MS  = (Basic) MS logic without edge  quantifications, MS2 = MS logic  with  edge  quantifications
C2MS = MS logic with even cardinality set  predicates. A set C  has  a  decidable L  satisfiability
problem  if one can decide for every  formula  in L   whether  it  is  satisfied  by some graph in C
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Proof  of  Seese’s  Theorem :

A)  If  a  set  of  graphs  C  has unbounded  tree-width, the set of its  minors  includes

all k x k-grids  (Robertson, Seymour)

B)  If  a  set  of  graphs   contains  all kxk-grids,  its MS2 satisfiability  problem is

undecidable

C) If C has  decidable MS2 satisfiability  problem, so has Minors(C),

because   C                     Minors(C)  is an  MS2 transduction.

Hence, if   C  has unbounded  tree-width and a decidable MS2 satisfiability

problem, we have a contradiction  for the decidability of the  MS2 satisfiability  problem

of Minors(C).
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Proof  of  Courcelle-Oum’s  Theorem :

D) Equivalence  between  the cases  of all  (directed and undirected) graphs  and

bipartite  undirected graphs.

A’)  If a  set  of  bipartite graphs  C  has unbounded  clique-width, the set of its  vertex-

minors  contains  all  “Sk“  graphs

C’)  If C has  decidable C2MS satisfiability  problem, so has Vertex-Minors(C),

because  C                 Vertex-Minors(C)  is a   C2MS transduction.

E)  An   MS transduction  transforms Sk into the kxk-grid.

Hence  A' + B + C' + E   gives the result for bipartite undirected graphs. Result with D.
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Definitions  and  facts

Local  complementation of  G  at vertex  v

G * v   =  G  with edge complementation of  G[nG(v)],

   the subgraph induced  by the neighbours of v

Local equivalence  ( ≈ loc )  = transitive closure of local  complementation

(at  all  vertices)

Vertex-minor  relation :

H  <VM  G  : ⇔ H  is an induced  subgraph  of  some G’ ≈ loc G.
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Proposition (Courcelle and Oum 2007) :  The  mapping  that  associates   with  G  its locally

equivalent  graphs  is a   C2MS transduction.

Why is  the  even cardinality  set predicate  necessary ?

 u                               Consider G * X for X ⊆ Y :

                                  u  is  linked  to  v  in G * X

 v                               ⇔    Card(X)  is even

G       Y



50

Definition of   Sk : bipartite : A = {1,…,(k+1)(k-1)} , B =  {1,…,k(k-1)} for  j  ∈  A,   i ∈  B :

edg(i,j )   ⇔   i ≤ j ≤ i+k-1

From Sk  to  Gridkxk   by an MS transduction

               S3               (folded)  Grid3x4

1) One can define the orderings of A and B :

x, y  are  consecutive   ⇔   Card(nG(x) ∆ nG(y)) = 2

2) One can identify the edges from i  ∈ B  to  i   ∈ A, and

from i ∈ B to i+k-1 ∈ A (thick edges on the left drawing)



51

3) One can create edges (e.g. from  1 ∈ A to 2 ∈ A, from  2 ∈ A to 3 ∈ A etc…and

similarly for B, and from  1 ∈ B to 4 ∈ A, etc…)  and delete others (from 4 ∈ B to 6 ∈ A

etc…), and vertices like 7,8 in A, to get  a grid containing Gridkxk

Corollary : If a set of directed acyclic graphs having Hamiltonian directed  paths has a

decidable MS satisfiability problem, then :

it has bounded clique-width,

it is the image of a set of trees under an MS transduction.

Proof : Since on these graphs a linear order is MS definable, MS and C2MS   are

equivalent.

The  previously known  techniques for similar results (in particular for line graphs or

interval  graphs,  B.C. 2004)  do not work in this case.


