
Monadic second-order logic

and the verification of graph properties

Bruno Courcelle

Université Bordeaux 1, LaBRI
and

Institut Universitaire de France

References : Chapter 5 in : Handbook of graph grammars vol.1, 1997,

Book in progress, Articles with J. Makowsky, U. Rotics, P. Weil, S. Oum, A. Blumensath ;
See : http://www.labri.fr/perso/courcell/ActSci.html

2

Monadic second-order logic : expression of properties, queries, optimization

 functions, number of configurations.

Mainly useful for tree-structured graphs (Second-order logic is useless)

Two types of questions :

Checking G = ϕ for fixed formula ϕ, given G , (Model checking)

Deciding if ∃ G, G ∈ C, G = ϕ for fixed C, given formula ϕ.

Tools to be presented

Algebraic setting for tree structuring of graphs

Recognizability = finite congruence ≡ inductive computability

≡ finite deterministic automaton on terms

Fefermann-Vaught : MS definability ⇒ recognizability.

Verification of graph properties.

3

History : Confluence of 4 independent research directions, now intimately

related :

1. Polynomial algorithms for NP-complete and other hard problems on particular

classes of graphs, and especially hierarchically structured ones : series-parallel

graphs, cographs, partial k-trees, graphs or hypergraphs of tree-width < k, graphs of

clique-width < k.

2. Excluded minors and related notions of forbidden configurations (matroid

minors, « vertex-minors »).

3. Decidability of Monadic Second-Order logic on classes of finite graphs, and on

infinite graphs.

4. Extension to graphs and hypergraphs of the main concepts of Formal

Language Theory : grammars, recognizability, transductions, decidability questions.

4

Summary

1. Introduction

Extension of Formal Language Theory notions

2. Context-free sets defined by equation systems.

3. The graph algebras HR and VR. Tree-width.

Algorithmic applications :

4. Inductive computations and recognizability; fixed-parameter tractable algorithms.

5. Monadic second-order logic defines inductive properties and functions

Formal language theory extended to graphs

6. Closure and decidability properties ; generation of classes of graphs by monadic

second-order transductions.

7. Graph rewriting.

5

Introduction : An overview chart :

Graph "Context-free"

operations sets of graphs

 Language theory

 for graphs

 Recognizable

Monadic 2nd sets of graphs Mon. 2nd order transductions

order logic

 Fixed parameter

 tractable algorithms

6

Key concepts of FLT and their extensions

Languages Graphs

Algebraic structure :
monoid (X*,*,ε)

Algebras based on graph operations : ⊕, ⊗, //
quantifier-free definable operations

Algebras : HR, VR
Context-free languages :

Equational subsets of (X*,*,ε)
Equational sets of the
algebras HR, VR

Regular languages :
Finite automata ≡

Finite congruences ≡
Regular expressions ≡

Recognizable sets
of the algebras

HR, VR
defined by congruences

≡ Monadic Second-order
definable sets of words or terms

∪
Monadic Second-order definable sets of graphs

Rational and other types of
transductions

Monadic Second-order transductions

7

Equational (context-free) sets

Equation systems = Context-Free (Graph) Grammars
 in an algebraic setting

In the case of words, the set of context-free rules

S → a S T ; S → b ; T → c T T T ; T → a

is equivalent to the system of two set equations:

S = a S T ∪ { b }

T = c T T T ∪ { a }

where S is the language generated by S (idem for T and T).

8

For graphs (or other objects) we consider systems of equations like:

S = f(k(S), T) ∪ { b }

T = f(T , f(g(T), m(T))) ∪ { a }

where f is a binary operation, g, k, m are unary operations on graphs,

a, b denote basic graphs (up to isomorphism).

An equational set is a component of the least (unique) solution of such an

equation system. This is well-defined in any algebra.

9

Logical expression of graph properties

Cf. Descriptive complexity, theory of data bases.

A graph G can be given as a logical structure

< VG , edgG(.,.) >.

Typical properties expressible by First-order formulas :

G has no loop, or has degree at most 5, or has indegree at most 3.

G has an induced subgraph isomorphic to a fixed finite graph (useful for

graph rewriting systems)

Such properties are characterized (Gaifman) as local properties.

10

Monadic Second-Order (MS) Logic
= First-order logic on power-set structures

= First-order logic extended with (quantified) variables
denoting subsets of the domains.

MS properties : transitive closure, properties of paths, connectivity,

planarity (via Kuratowski, uses connectivity), k-colorability.

Examples of formulas for G = < VG , edgG(.,.) >, undirected

Non connectivity :
∃X (∃x ∈ X ∧ ∃y ∉ X ∧ ∀u,v (u ∈ X ∧ edg(u,v) ⇒ v ∈ X))

2-colorability (i.e. G is bipartite) :
∃X (∀u,v (u ∈ X ∧ edg(u,v) ⇒ v ∉ X) ∧ ∀u,v (u ∉ X ∧ edg(u,v) ⇒ v ∈ X))

11

Edge set quantifications

Provably more powerful.

Incidence graph of G undirected, Inc(G) = < VG ∪ EG, incG(.,.) >.

incG(v,e) ⇔ v is a vertex of edge e.

Monadic second-order (MS2) formulas written with inc can use quantifications
on sets of edges.

Existence of a Hamiltonian circuit is expressible by an MS2 formula, but not by an
MS formula.

Theorem : MS2 formulas are no more powerful than MS formulas :
for graphs of degree < d, or of tree-width < k,
or for planar graphs, or for graphs without some fixed H as a minor,
or graphs of average degree < k (uniformly k-sparse).

12

The two types of questions we would like to solve :

1) Checking G = ϕ for fixed formula ϕ, given G , (Model checking)

Polynomial time O(ns) for each first-order formula with s variables.

Linear for each first-order formula on graphs of bounded degree.

NP-complete problems (3-coloring) can be expressed by MS formulas.

Linear for each MS formula on graphs of bounded tree-width.

2) Deciding if ∃ G, G ∈ C, G = ϕ for fixed C, given formula ϕ.

Even for first-order formulas, undecidable on the class of all finite graphs, and

even of all finite planar graphs of degree at most 3.

Decidable for MS formulas with edge set quantifications on the class of graphs

of tree-width < k, and for each fixed k (untractable). Also on certain context-free

sets of graphs (defined by HR grammars).

13

Tree-decompositions and their algebraic definition.

14

Tree-width

Tree-decomposition of width k : k+1 = maximum size of a box

Tree-width : twd(G) = minimum width of a tree-decomposition

Trees have tree-width 1,

Kn has tree-width n-1,

the n x n grid has tree-width n

Outerplanar graphs have tree-width at most 2.

15

HR operations : Origin : Hyperedge Replacement hypergraph grammars ; associated complexity

measure : tree-width

Graphs have distinguished vertices called sources, pointed to by labels from

a set of size k : {a, b, c, ..., h}.

Binary operation(s) : Parallel composition

G // H is the disjoint union of G and H and sources with same label are fused.

(If G and H are not disjoint, one first makes a copy of H disjoint from G).

16

Unary operations : Forget a source label

Forgeta(G) is G without a-source : the source is no longer

 distinguished ; it is made "internal".

Source renaming :

Rena,b(G) exchanges source names a and b

(replaces a by b if b is not the name of a source)

Nullary operations denote basic graphs : the connected graphs with at most one edge. For

dealing with hypergraphs one takes more nullary symbols for denoting hyperedges.

More precise algebraic framework : a many sorted algebra where each finite set of source

labels is a sort. The above operations are overloaded.

17

Proposition: A graph has tree-width ≤ k if and only if it can be constructed from

basic graphs with ≤ k+1 labels by using the operations // , Rena,b and Forgeta .

Example : Trees are of tree-width 1, constructed with two source labels, r (root) and n (new root):

Fusion of two trees at their roots :

Extension of a tree by parallel composition

with a new edge, forgetting the old root,

making the "new root" as current root :

E = r •_________• n

Renn,r (Forgetr (G // E))

18

From an algebraic expression to a tree-decomposition

Example : cd // Rena,c (ab // Forgetb(ab // bc))

Constant ab denotes a directed edge from a to b.

 The tree-decomposition associated with this term.

19

VR operations

Origin : Vertex Replacement graph grammars

Associated complexity measure : clique-width, has no combinatorial characterization but is

defined in terms of few very simple graph operations (whence easy inductive proofs).

Equivalent notion : rank-width (Oum and Seymour) with better structural and algorithmic

properties.

Graphs are simple, directed or not.

k labels : a , b , c, ..., h. Each vertex has one and only one label ;

a label p may label several vertices, called the p-ports.

One binary operation: disjoint union : ⊕

20

Unary operations: Edge addition denoted by Add-edga,b

Add-edga,b(G) is G augmented with (un)directed edges from every a-port to every

b-port.

 G Add-edga,b(G)

21

Vertex relabellings : Relaba,b(G) is G with every vertex labelled by a relabelled into b

Basic graphs are those with a single vertex.

Definition: A graph G has clique-width ≤ k ⇔ it can be constructed from basic graphs

by means of k labels and the operations ⊕, Add-edga,b and Relaba,b

Its (exact) clique-width, cwd(G), is the smallest such k.

22

Proposition : (1) If a set of simple graphs has bounded tree-width, it has bounded

clique-width, but not vice-versa.

(2) Unlike tree-width, clique-width is sensible to edge directions : Cliques have clique-

width 2, tournaments have unbounded clique-width.

(3) a. Deciding “Clique-width < 3” is a polynomial problem. (Habib et al.)

 b. The complexity (polynomial or NP-complete) of “Clique-width = 4” is unknown.

 c. It is NP-complete to decide for given k and G if cwd(G) < k. (Fellows et al.)

 d. There exists a cubic approximation algorithm that for given k and G

answers (correctly) : either that cwd(G) >k,

or produces a clique-width algebraic term using 224k labels. (Oum)

This yields Fixed Parameter Tractable algorithms for many hard problems.

23

Example : Cliques have clique-width 2.

Kn is defined by tn where tn+1 = Relabb,a(Add-edga,b(tn ⊕ b))

Example : Cographs are generated by ⊕ and ⊗ defined by :

G ⊗ H = Relabb,a (Add-edga,b (G ⊕ Relaba,b(H))

 = G ⊕ H with “all edges” between G and H.

24

Algorithmic applications

Fixed parameter tractability results

Theorem (B.C.) : For graphs of tree-width ≤ k ,

each monadic second-order property, (ex. 3-colorability),

each monadic second-order optimization function, (ex. distance),

each monadic second-order counting function, (ex. # of paths)

 is evaluable in linear time with help of a result by Bodlaender (1996).

Similar results hold for clique-width bounded graphs and monadic

second-order logic without edge set quantifications with cubic time

because of the parsing step.

25

Applications to the decidability of logical formulas

on classes of graphs
Theorem (B.C.) : The following problems can be solved by an algorithm :

Twd-MS2 : Input : k and a monadic second-order formula (with edge set quantifications).

Questions : Does the corresponding property hold for graphs of tree-width ≤ k ?

Does the corresponding property hold some graph of tree-width ≤ k ?

(tree-width ≤ k can be replaced by : in a given HR-equational set).

Cwd-MS : Input : k and a monadic second-order formula (without edge set

quantifications).

Questions : Does the corresponding property hold for graphs of clique-width ≤ k ?

Does the corresponding property hold some graph of clique-width ≤ k ?

(clique-width ≤ k can be replaced by : in a a given VR-equational set).

(Limited) application : Checking the 4-Color Theorem for graphs of cwd < k.

26

Inductive computations

Example : Series-parallel graphs, defined as graphs with sources 1 and 2,

generated from e = 1 2 and the operations // (parallel-composition) and

series-composition defined from other operations by :

G • H = Forget3(Ren2,3 (G) // Ren1,3 (H))

Example :

 1 • G • H • 2

 3

 1 • • 2

27

Inductive proofs :

1) G, H connected implies : G//H and G • H are connected, (induction)

e is connected (basis) :

⇒ All series-parallel graphs are connected.

2) It is not true that :

G and H planar implies : G//H is planar (K5 = H//e).

A stronger property for induction :

G has a planar embedding with the sources in the same “face”

⇒ All series-parallel graphs are planar.

28

Inductive computation : Test for 2-colorability

1) Not all series-parallel graphs are 2-colorable (see K3)
2) G, H 2-colorable does not imply that G//H is 2-colorable (because K3=P3//e).

3) One can check 2-colorability with 2 auxiliary properties :

 Same(G) = G is 2-colorable with sources of the same color,
Diff(G) = G is 2-colorable with sources of different colors

and by using rules :
Diff(e) = True ; Same(e) = False
Same(G//H) ⇔ Same(G) ∧ Same(H)
Diff(G//H) ⇔ Diff(G) ∧ Diff(H)
Same(G•H) ⇔ (Same(G) ∧ Same (H)) ∨ (Diff(G) ∧ Diff(H))
Diff(G•H) ⇔ (Same(G) ∧ Diff(H)) ∨ (Diff(G) ∧ Same(H))

We can compute for every SP-term t, by induction on the structure of t the pair of

Boolean values (Same(Val(t)) , Diff(Val(t))). We get the answer for G = Val(t) (the

graph that is the value of t) regarding 2-colorability.

29

Important facts :

1) The existence of properties forming an inductive set (w.r.t. operations of F)

is equivalent to recognizability in the considered F-algebra.

2) The simultaneous computation of m inductive properties can be implemented

by a "tree" automaton with 2m states working on terms t. This computation

takes time O(t ).

3) An inductive set of properties can be constructed (at least theoretically) from

every monadic-second order formula.

4) This result extends to the computation of values (integers) defined by

monadic-second order formulas.

30

Definition : A set L of words, of trees, of graphs or relational structures is
Monadic Second-Order (MS) definable iff

L = { S / S = ϕ } for an MS formula ϕ

Theorem : (1) A language (set of words or finite terms) is
recognizable ⇔ it is MS definable

(2) A set of finite graphs is VR-recognizable
⇐ it is MS definable

(3) A set of finite graphs is HR-recognizable
 ⇐ it is MS2 definable

Proofs:
(1) Doner, Thatcher, Wright, see W. Thomas, Handbook formal languages, vol.3.
(2) (3) There are two possible proofs . I sketch the informative one.

31

Basic facts for (2) :

Let F consist of ⊕ and unary quantifier-free definable operations f.

For every MS formula ϕ of quantifier-height k, we have

(a) for every f , one can construct a formula f#(ϕ) such that :

 f(S) = ϕ ⇔ S = f#(ϕ)

(b) (Hanf, Fefermann and Vaught, Shelah) one can construct formulas ψ1,…,ψn,θ1,…,θn

such that :

S⊕T = ϕ ⇔ for some i, S = ψi ∧ T = θ i

where f#(ϕ), ψ1,…,ψn, θ1,…,θn have quantifier-height < k.

(c) Up to equivalence, there are finitely many formulas of quantifier-height < k forming a set Φk.

One builds an automaton with states the subsets of Φk : the MS-theories of quantifier-height < k of

the graphs defined by the subterms of the term to be processed.

32

33

34

8.

35

Graph Rewriting

1) graph rewriting rules : local graph transformations

2) grammars based on graph rewriting rules
- either context-free : there are 2 types :

-- hyperedge replacement rewriting rules, fairly
manageable, equivalent to HR-equation systems
-- vertex replacement, very complicated,
equivalent to VR-equation systems

- or more general : hard to obtain general results

3) possible applications :
- graph properties invariant under application of local graph

transformations,
- verification of programs with complex data structures and

pointers.

36

Example : Series-parallel graphs
 defined as the set of graphs with sources 1 and 2,

generated from e = 1 2 and the operations // (parallel-composition) and

series-composition defined from other operations by :

G • H = Forget3(Ren2,3 (G) // Ren1,3 (H))

 1 • G • H • 2

 3

Equation : S = S//S ∪ S•S ∪ e

Rewriting rules 1 S 2 1 S . S 2

S

1 S 2 1 S 2 ; 1 S 2 1 2

37

Local graph transformations :

Rule : L R , L and R are graphs with same source names.

Application of the rule :

G H if G = ForgetAll(K//L) and H = ForgetAll(K//R)

for some graph K with same source names as L,R.

Intuition : in G, a subgraph isomorphic to L is replaced by R ; the "gluing

vertices" are sources.

38

Questions to ask :

For a property P :

1) Is it true that if G satisfies P, and L R is applicable, the resulting

graph satisfies P?

If P is first-order expressible or monadic second-order

expressible, then this is decidable on graphs of tree-width < k, for

each k.

2) Is it true that all graphs derivable from G by a given finite set of rules

satisfy P ?

One must give more hypotheses.

39

Monadic second-order transductions

STR(Σ): the set of finite Σ-relational structures (or finite directed ranked Σ-hypergraphs).

MS transductions are multivalued mappings : τ : STR(Σ) STR(Γ)

 S  T = τ (S)
where T is :

a) defined by MS formulas

b) inside the structure: S ⊕ S ⊕ ... ⊕ S
(fixed number of disjoint "marked" copies of S)

c) in terms of "parameters", subsets X1, …,Xp of the domain of S.

40

Proposition : The composition of two MS transductions is an MS

transduction.

Remark : For each tuple of parameters X1, …,Xp satisfying an MS property, T is
uniquely defined. τ is multivalued by the different choices of parameters.

Examples : (G,{x})  the connected component containing x.

(G,X,Y)  the minor of G resulting from contraction of edges in X and deletion of
edges and vertices in Y.

41

Example of an MS transduction (without parameters) : The square mapping
δ on words: u → uu

For u = aac, we have S • → • → •
 a a c

S ⊕ S • → • → • • → • → •

a a c a a c
p1 p1 p1 p2 p2 p2

δ(S) • → • → • → • → • → •

a a c a a c

In δ(S) we redefine Suc (i.e., →) as follows :

Suc(x,y) : ⇔ p1 (x) & p1 (y) & Suc(x,y) v p2 (x) & p2 (y) & Suc(x,y)
 v p1 (x) & p2 (y) & "x has no successor" & "y has no predecessor"

We also remove the "marker" predicates p1, p2.

42

The fundamental property of MS transductions :

S  τ (S)

τ #(ψ)  ψ

Every MS formula ψ has an effectively computable backwards translation τ #(ψ),
an MS formula, such that :

S = τ #(ψ) iff τ (S) = ψ

The verification of ψ in the object structure τ(S) reduces to the verification of
τ #(ψ) in the given structure S.

Intuition : S contain all necessary information to describe τ(S) ; the MS properties of τ(S)
are expressible by MS formulas in S

Consequence : If L ⊆ STR(Σ) has a decidable MS satisfiability problem, so has its image
under an MS transduction.

43

Other results
 1) A set of graphs is VR -equational iff it is the image of (all) binary trees under an MS
transduction. VR-equational sets are stable under MS-transductions.

A set of graphs has bounded clique-width iff it is the image of a set of binary
trees under an MS transduction.

2) A set of graphs is HR-equational iff it is the image of (all) binary trees under an
MS2 transduction.

HR-equational sets are stable under MS2-transductions.

A set of graphs has bounded tree-width iff it is the image of a set of binary trees
under an MS2 transduction.

44

Relationships between algebraic and logical notions

Algebraic
notions

Algebraic
characterizations

Logical
characterizations

Closure
properties

union, ∩ Rec
equation systems MS-trans(Trees) homoEQ
Val(REC(Terms)) MS-trans

Boolean opns
congruences MS-def ⊂ REC homo-1REC

MS-trans-1

Signatures for graphs and hypergraphs :

HR : graphs and hypergraphs with “sources”
VR : graphs with vertex labels (“ports”)
VR+ : VR with quantifier-free operations (ex. edge complement)

45

Links between MS logic and combinatorics:

Seese’s Theorem and Conjecture

Theorem (Seese 1991): If a set of graphs has a decidable MS2 satisfiability

problem, it has bounded tree-width.

Conjecture (Seese 1991): If a set of graphs has a decidable MS satisfiability

problem, it is the image of a set of trees under an MS transduction,

equivalently, has bounded clique-width.

Theorem (B.C., S. Oum 2004): If a set of graphs has a decidable C2MS

satisfiability problem, it has bounded clique-width.
MS = (Basic) MS logic without edge quantifications, MS2 = MS logic with edge quantifications
C2MS = MS logic with even cardinality set predicates. A set C has a decidable L satisfiability
problem if one can decide for every formula in L whether it is satisfied by some graph in C

46

Proof of Seese’s Theorem :

A) If a set of graphs C has unbounded tree-width, the set of its minors includes

all k x k-grids (Robertson, Seymour)

B) If a set of graphs contains all kxk-grids, its MS2 satisfiability problem is

undecidable

C) If C has decidable MS2 satisfiability problem, so has Minors(C),

because C Minors(C) is an MS2 transduction.

Hence, if C has unbounded tree-width and a decidable MS2 satisfiability

problem, we have a contradiction for the decidability of the MS2 satisfiability problem

of Minors(C).

47

Proof of Courcelle-Oum’s Theorem :

D) Equivalence between the cases of all (directed and undirected) graphs and

bipartite undirected graphs.

A’) If a set of bipartite graphs C has unbounded clique-width, the set of its vertex-

minors contains all “Sk“ graphs

C’) If C has decidable C2MS satisfiability problem, so has Vertex-Minors(C),

because C Vertex-Minors(C) is a C2MS transduction.

E) An MS transduction transforms Sk into the kxk-grid.

Hence A' + B + C' + E gives the result for bipartite undirected graphs. Result with D.

48

Definitions and facts

Local complementation of G at vertex v

G * v = G with edge complementation of G[nG(v)],

 the subgraph induced by the neighbours of v

Local equivalence (≈ loc) = transitive closure of local complementation

(at all vertices)

Vertex-minor relation :

H <VM G : ⇔ H is an induced subgraph of some G’ ≈ loc G.

49

Proposition (Courcelle and Oum 2007) : The mapping that associates with G its locally

equivalent graphs is a C2MS transduction.

Why is the even cardinality set predicate necessary ?

 u Consider G * X for X ⊆ Y :

 u is linked to v in G * X

 v ⇔ Card(X) is even

G Y

50

Definition of Sk : bipartite : A = {1,…,(k+1)(k-1)} , B = {1,…,k(k-1)} for j ∈ A, i ∈ B :

edg(i,j) ⇔ i ≤ j ≤ i+k-1

From Sk to Gridkxk by an MS transduction

 S3 (folded) Grid3x4

1) One can define the orderings of A and B :

x, y are consecutive ⇔ Card(nG(x) ∆ nG(y)) = 2

2) One can identify the edges from i ∈ B to i ∈ A, and

from i ∈ B to i+k-1 ∈ A (thick edges on the left drawing)

51

3) One can create edges (e.g. from 1 ∈ A to 2 ∈ A, from 2 ∈ A to 3 ∈ A etc…and

similarly for B, and from 1 ∈ B to 4 ∈ A, etc…) and delete others (from 4 ∈ B to 6 ∈ A

etc…), and vertices like 7,8 in A, to get a grid containing Gridkxk

Corollary : If a set of directed acyclic graphs having Hamiltonian directed paths has a

decidable MS satisfiability problem, then :

it has bounded clique-width,

it is the image of a set of trees under an MS transduction.

Proof : Since on these graphs a linear order is MS definable, MS and C2MS are

equivalent.

The previously known techniques for similar results (in particular for line graphs or

interval graphs, B.C. 2004) do not work in this case.

