

Rethinking reliability for challenged networks

Pierre Ugo Tournoux^{1,2}

Advisors:

Emmanuel Lochin^{1,2}, Michel Diaz², Patrick Sénac^{1,2}

1. LAAS-CNRS 2. ISAE

Outline

- Context
 - Network Robot Systems
 - -Challenged Networks
- Proposal
- Results
- Current and futures works

Telerobotics and Network Control Systems

« The defining feature of an NCS is that control and feedback are exchanged among the systems components in the form of information package through a network », NSC Basics

Issues:

- System performance, i.e fast response, low data loss ratio...
- System reliability
- System security
- System flexibility i.e (plug and play...)
- L. Li and F. Wang, June 2008, Control and Communication Synthesis in Networked Control Systems, *International Journal of Intelligent Control and Systems, Vol. 13*, 81-88

Network Robots Systems

- Mobility ?
- Variable nodes density?
- Dynamic environement ?
- Interference ?
- High loss rate ?

- Intermitent connectivity ?
- Multiple network interfaces?
- ...

A. Sanfeliu , N. Hagita and A.Saffioty, July 2008, Network Robot Systems, *Robotics and Autonomous Systems, Vol. 13*, 793-797

Challenged Networks...

""Challenged networks include those found in mobile and in-motion networking, dynamic wireless networks, heterogeneous and mobile sensor networks, interplanetary networking, and providing rural connectivity. Such networks are not well served by standard TCP/IP solutions, due to the prevalence of disconnection, disruption, intermittency, large delays, or other factors."" **Kevin Fall**

- Intermittent connectivity
 - Mobility, radio propagation, battery issues
- Long propagation delays
 - Under water systems, satellite links, data mules
- Asymmetric data rates
 - Almost or completely unidirectional
- High error rates
 - Lossy environment

Challenged Networks...

Regular end-to-end communication protocols may fail (e.g., TCP, OSPF)

Need to restate the communication paradigm

- Routing layer
 - Store and forward paradigm
 - Routing metrics based on the underlying mobility:
 - Prophet, Maxprop, Mobyspace, DA-SW, SW, Sim-Bet, BubbleRap, CARS, Rapid (...) ...
 - MANET routing algorithm
 - DSDV, OLSR, AODV, ZRP, CBRP, TORA, DSR, CGSR, HSR
 (...) ...

Challenged Networks...

- Transport Layer:
 - Many TCPs variant
 - None of them is designed for the Challenged Networks requirements
 - DTN Transport layer
 - LTP-T, Saratoga, UNI-DTN..
- « Transport layer issues remains to be adressed in DTMN »
 - K. Harras and K. Almeroth, May 2006, Transport Layer Issues in Delay Tolerant Network, IFIP 06

Full reliability is still dependant of an Acknoledgement Path, retransmission and RTT⁷!

Questions?

- How can we enable full reliability without an acknowledgement path?
- Can we design a tolerant to acknowledgement losses reliable mechanism?
- Can we design a generic mechanism (bulk data transfer + realtime?)
- Definition: We define as tolerant to acknowledgement losses a mechanism which does not need timely updated information from the receiver to determine which packets must be resent without impacting on the data availability at the receiver side.
- J. Lacan and E. Lochin, Rethinking reliability for long delay networks Oct 2008, In Proc. Of IWSSC

Our proposal

- Building such mechanism: tolerant to ACK-losses based on a new erasure coding scheme
 - Idea: combining network coding + transport protocol
- In its most general form full-reliability can be achieved
- Presents really good properties for realtime apps (VoIP, video-conferencing)
 - Indeed: not self-clocked mechanism
 - In particular : low delay in terms of data recovery

The big picture

- Most of erasure codes used over packet erasure channels are block codes
 - A set of repair packets is built from a set of source data packets
 - If few losses => redundancy are useless
 - Alternative Hybrid FEC-ARQ
 - Use receiver feedback to send or adjust redundancy
- Burst erasure codes (Martinian & Sundberg 2004) use a sliding window
 - Designed for « real-time » purpose
- Our proposal => mix of these contributions
 - Build redundancy with an elastic window updated when possible by non-mandatory rcv feedback

Basic rules

- Redundancy packets are built from data packets ranging from 1 to n unless one feedback received
 - P1 P2 R(1,2) P3 P4 R(1,4)
 - To generate R: sender computes a linear combination over a binary or non binary finite field
- When nb redundancy packets == nb lost ones
 - 4 losses mean a 4x4 matrix to invert in order to rebuild all packets
- Downlink is not mandatory but useful to decrease computation complexity
 - Can also be used to confirm data arrival to the sender
 - Use of « seen » packets concept
 - cf. IEEE ISIT 08 « ARQ for Network Coding » Jay Kumar Sundararajan, Devavrat Shah, Muriel Médard

Main principle

« Sack when seen » strategy

Illustration results (plr=20%)

Implementation Issues

- The recurrence time
- The mean distribution of the inverted matrices size
- The buffer sizing at the receiver side
 - Evolves linearly as a function of packet loss rate

Both CPU and storage ressources remains within realistic bounds

Implementation Issues: Exemple

Buffer size as a function of Packet loss rate for one Ack per received packet (left), one per RTT (right)

Further results in ISAE Tech-Report http://arxiv.org/abs/0904.4202

VOIP results

Video conferencing results:

In order delivery delay

(for full-reliability)

Current Work: TCP, UDP

 Add a full-reliability layer below TCP or UDP

WHY?

- Enable TCP real-time behaviour
- Reduce transfert duration

HOW?

- Transparent: No modifications needed on TCP sources codes
- Allow a wide and fast adoption and deployement

Current work: Analysis

- « Elastic encoding » always outperform HARQ, ARQ schemes
 - It can be proved... To be done

- Estimate Protocol parameters to remain below an expected delay
 - In function of sending rate and loss rate

Current Work: DTMN

(Delay Tolerant Mobile Network)

- Full-Reliability Transport Layer for DTMNs
 - Implementation inside Saratoga , LTP-T or UNI-DTN ?

WHY?

- Current Routing protocols/networks have a low bundle delivery ratio
- Acknoledgement path often not exists
- RTT can be very large in those networks

Current and future works

Extend previous measurements

 Design the way to implement it in a congestion controlled protocol (a ratebased?)

Reliable multicast

Conclusion

The loss recovery delay / RTT depency is now broken

A wide panel of applications over:

- Internet
- Networked Robots...
- DTNs / DTMNs

A prototype for Real-time (Video conf, VOIP..), Robotics, bulk transfer is almost ready

Questions?

Thank you!

Backup Slides

Matrix inversion statistics

Complete Overview

Matrix inversion

- High probability of being invertible
 - If finite field choosen sufficiently large

```
   P1
   P2
   P3
   P4

   P1
   P2
   P3
   P4
   P5
   P6
   P7
   P8

   P1
   P2
   P3
   P4
   P5
   P6
   P7
   P8
```

$$(R_1^{'6}, R_1^{'8})^T = \begin{pmatrix} \alpha_3^{(1,6)} & \alpha_4^{(1,6)} \\ \alpha_1^{(1,8)} & \alpha_4^{(1,8)} \end{pmatrix} (P_3, P_4)$$