

LAAS-CNRS

Environnement pour le calcul intensif pair à pair

Doctorant : The Tung NGUYEN

Encadrant : Didier EL BAZ

Groupe : CDA

Plan de l'exposé

Problématique

Projet ANR-CIP

Objectifs de la thèse

Travaux effectués

1. Problématique

- ☐ Contexte
 - Emergence des applications pair à pair
 - Performance des microprocesseurs
 - Réseau très haut débit
 - ⇒ Calcul intensif pair à pair : économique et attractif
- ☐ Systèmes existants ont des limites
 - Architecture centralisée
 - Pas de communication entre les pairs
 - Pas de mécanisme de tolérance aux fautes etc.

2. Projet ANR-CIP

- ☐ Acronyme : CIP Calcul Intensif Pair A Pair
- Objectifs : conception des outils pour la mise en œuvre de calculs intensif sur les réseaux pair à pair
- \square 3 sous-projets :
 - □ P2Pperf
 - □ P2Pdc
 - □ P2Psimul

2. Projet ANR-CIS

P2Pperf

- Outil de simulation de calculs intensifs pair à pair à grande échelle
- ☐ Equipe de Montbéliard LIFC
- \square 2 modules:
 - NetPerf : simulation de la partie réseau d'une application pair à pair
 - ☐ CompPerf : évaluation de performances

2. Projet ANR-CIS

P2Pdc

- ☐ Environnement décentralisé pour le calcul intensif pair à pair
- □LAAS CNRS
- ☐ Basé sur un protocole de communication autoadaptatif dédié au calcul intensif pair à pair

2. Projet ANR-CIS

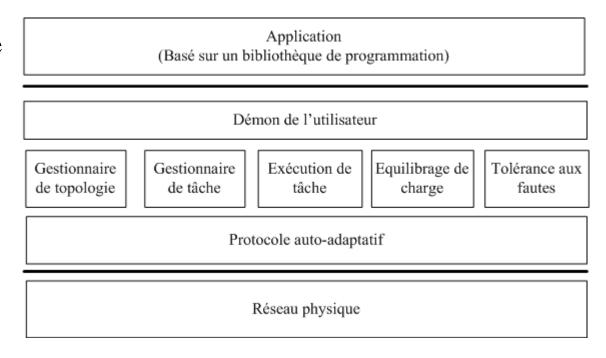
P2Psimul

- ☐ Démonstrateur et défis applicatifs
- □ LaRIA, ENSEEIHT-IRIT et LAAS CNRS
- ☐ Développement du code pour la résolution des problèmes :
 - Electrophorèses
 - ☐ Mathématiques financières
 - Logistique

3. Objectif de la thèse

- ☐ Sous-projet P2Pdc
- \square 2 parties :
 - ☐ Conception d'un protocole de communication auto-adaptatif dédié au calcul intensif pair à pair
 - ☐ Conception d'un environnement pour la mise en œuvre de calcul intensif pair à pair

3. Objectif de la thèse

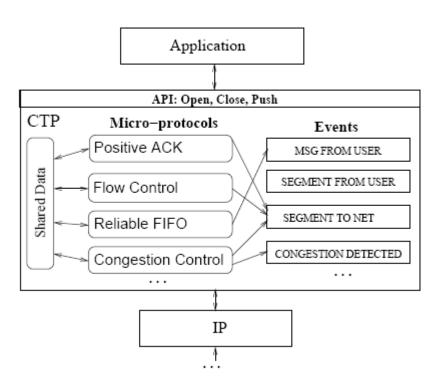

Protocole de communication auto-adaptatif

- Objectif: choix du mode de communication le plus approprié en fonction de la localité et de la méthode de résolution ...
- ☐ Exemple : modèle couplé en simulation numérique
 - ☐ Intra-cluster, méthode itérative synchrone : communication synchrone, pas de perte de message
 - ☐ Inter-cluster, méthode itérative asynchrone : communication asynchrone, tolérance aux fautes

3. Objectif de la thèse

Environnement pour le calcul intensif pair à pair

- ☐ Architecture décentralisée
- ☐ Mécanismes d'autoconfiguration, d'autoorganisation assurant la robustesse vis-à-vis de la volatilité des pairs
- 6 fonctionnalités

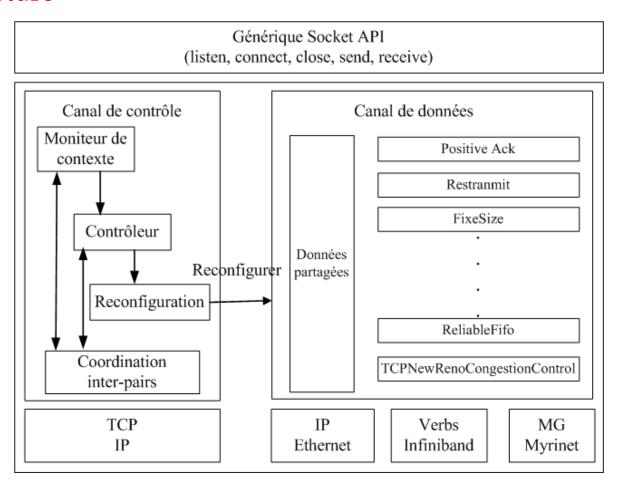


4. Travaux effectués

- ☐ Protocole de communication auto-adaptatif
 - > Approche : micro-protocole
- ☐ Frameworks de composition protocolaire
 - Cactus
 - Appia
 - x-kernel
 - Simoa
 - XQoS
 - • •
 - => Cactus : flexible et performant

Cactus

- ☐ Framework pour construire des protocoles reconfigurables
- Services de protocole : micro-protocoles
- Un micro-protocole : collection des traiteurs d'événement (event handlers).
- Données partagées : accédées par tous les micro-protocoles
- Reconfiguration : association et désassociation des traiteurs
- ☐ CTP : Composite Transport Protocol



Réseaux hautes performantes

☑ Myrinet
 ➢ Latence base
 ➢ Bande passante élevée
 ☑ InfiniBand
 ➢ RDMA
 ☑ Quadrics
 ➢ Offload le protocole TCP/IP

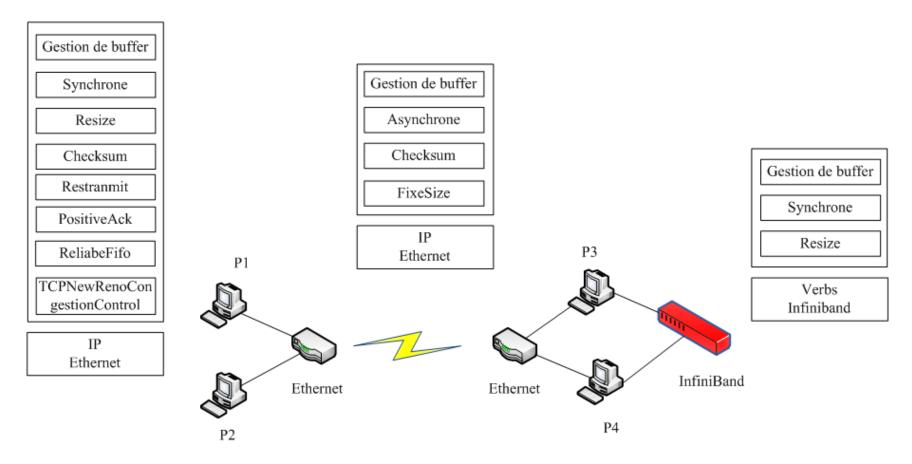
P2PSAP – Peer To Peer Self-Adaptive Protocol

Architecture

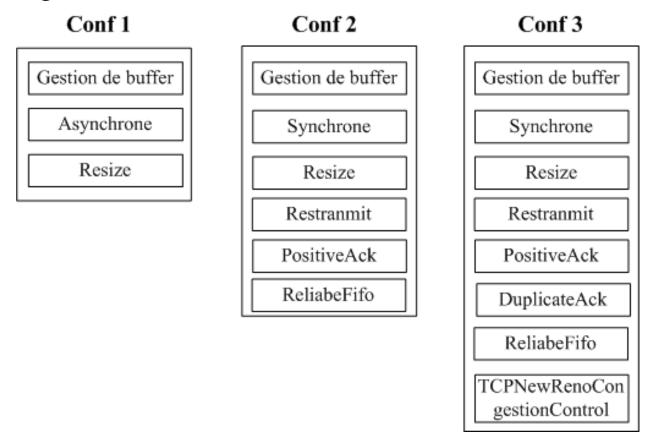
Problématique

Travaux effectués

P2PSAP – Peer To Peer Self-Adaptif Protocol


Liste des micro-protocoles :

- Gestion de buffer
- Synchronisation : Synchrone, Asynchrone
- Fragmentation : FixeSize, Resize
- Checksum
- Fiabilité: ForwardErrorCorrection, Retransmission,
 PositiveAck, NegativeAck, DuplicateAck, SelectiveAck ...
- Ordre : LossyFifo, ReliableFifo
- Contrôle de congestion : Rate-based congestion control, NewReno TCP Congestion Control, H-TCP Congestion Control
- • •


P2PSAP – Peer To Peer Self-Adaptif Protocol

Scénario :

P2PSAP – Expérimentation

- ☐ UDP/IP/Ethernet
- □ 3 configurations :

P2PSAP – Expérimentation

☐ Résultats:

	Latence (µs)	Bande passante (Mb/s)
UDP	170	90,9
Conf 0	248	88,7
Conf 1	311	85,9
Conf 2	332	80,6
TCP	177	84,1

Merci de votre attention!