# Les dépôts en phase vapeur (CVD)

**B. ROUSSET** 

#### PLAN

I - INTRODUCTION GENERALE

II - PRINCIPE

#### **III - DESCRIPTION DES MECANISMES**

**IV - LA CINETIQUE DE CROISSANCE** 

**V - LES DIFFERENTS PROCEDES TECHNIQUES** 

#### VI - APPLICATION AU DEPOT DE POLYSILICIUM ET DE NITRURE DE SILICIUM ; CARACTERISATION

**VII - LES CONTRAINTES** 

#### VIII – PROTOTYPE D'UN REACTEUR CVD SPECIFIQUE AUX MICROSYSTEMES

- REFERENCES

## INTRODUCTION

#### COUCHE MINCE D'UN MATERIAU

• Caractéristique d'une couche mince

Valeur élevée du rapport surface/volume comparée à celle du même rapport du matériau massif

• Exemple de différentes couches minces



Figure 1 : Vue en coupe d'une cellule CMOS

- Catégories de couches minces
  - I Interaction d'espèces en phase vapeur et du substrat sur lequel elles se déposent

II - Dépôt d'espèces sur le substrat n'entraînant aucune modification de ce dernier

- A partir d'une phase vapeur obtenue par réaction physique (Physical Vapor Deposition) telles que l'évaporation, la sublimation, le bombardement ionique.
- A partir d'une phase gazeuse contenant divers produits gazeux réagissant chimiquement entre eux (Chemical Vapor Deposition)

## **DEFINITION DU CVD**

- Le CVD est un procédé dans lequel les constituants chimiques réagissent en phase vapeur ou sur un substrat chauffé pour former un dépôt solide.

- Matériaux obtenus :

- Conducteur
- Semi-conducteur
- Isolant

- Cette réaction fait intervenir plusieurs disciplines scientifiques et techniques qui sont :

- la thermodynamique
- la physique des plasmas
- la mécanique des fluides
- la chimie (pyrolyse, hydrolyse, oxydation, réduction, nitruration, carburation, cémentation)

- Recherche importante (Compréhension des phénomènes, modélisation)

## DESCRIPTION D'UN DEPOT LPCVD DE SILICIUM POLYCRISTALLIN



Figure 2 : Réacteur standard de dépôt de silicium polycristallin

#### **Etapes**:

- Mise en température du tube
- Pompage dans le tube
- Introduction du gaz
- Décomposition de SiH4 au contact du substrat sous l'action de la température

 $\begin{array}{rl} \text{SiH4} \rightarrow & \text{SiH2} + \text{H2} \\ \text{SiH2} \rightarrow & \text{Si} + \text{H2} \end{array}$ 

- Dépôt de Si sur les substrats
- Pompage des produits volatiles
- Contrôle des paramètres : débit de gaz pression à l'intérieur du tube température

### LES DEPOTS CVD. CAS DU SILICIUM POLYCRISTALLIN

#### **Principe**:



Figure 3 : Représentation schématique des mécanismes de dépôt en phase vapeur [11]

(1) Mise en présence d'un composé volatil du matériau SiH4 et du substrat

(2) Dissociation du SiH<sub>4</sub> en Silylène SiH<sub>2</sub> (pyrolyse : Décomposition chimique obtenue par chauffage sans catalyseur).

(3) Adsorption du SiH<sub>2</sub> sur un site de surface disponible

(4) Dissociation du SiH<sub>2</sub> en Si et H<sub>2</sub>

(5) Désorption de H<sub>2</sub>

(6) Migration du Si jusqu'à son incorporation dans le réseau cristallin

## METHODES D'ACTIVATION ET NATURE DES COUCHES OBTENUES PAR CVD

#### 1) Activation thermique

- Première méthode utilisée
- Les espèces actives sont obtenues par pyrolyse et/ou sur le substrat
- Le chauffage du substrat peut être direct ou indirect direct : radiation thermique (mur chaud) indirect : passage de courant électrique induction magnétique utilisation de photon (laser, UV) (mur froid)

#### 2) Activation électrique

Obtention des espèces actives par décharge électrique (plasma en continu, RF, µondes, ...)

#### NATURE DES COUCHES OBTENUES [3]

Ce procédé permet d'obtenir des couches d'épaisseur variable de pratiquement tous les métaux, alliages ou composés métalliques, isolants sur des matériaux conducteurs ou isolants.

Métaux : Cu, Al, Pt, Fe, ... Carbures de : Be, Si, Ti, ... Nitrures de : Ti, Be, Al, Si, ... Borures de : Al, Si, Ti, ... Siliciures de : Ti, W, Cu, ... Oxydes de : Al, Si, Ti, ...

#### LA VITESSE DE DEPOT

La vitesse de dépôt est directement liée à la température à laquelle les réactions chimiques se produisent à la surface, une fois que les espèces réactives ont traversé la couche limite.

v = v<sub>0</sub> e<sup>-Ea/KT</sup> (loi d'Arrhenius)
E<sub>a</sub> : énergie d'activation en eV
T : Température en °K
v<sub>0</sub> : constante dépendant de la pression et des débits



Figure 4 : Représentation de la variations de la vitesse de dépôt en fonction de la température

#### LA CINETIQUE DE CROISSANCE : LES DIFFERENTS REGIMES PRESENTS

1 - Cas "idéal"



Si l'apport en espèces réactives est suffisant, la vitesse de croissance ne dépend que de la température, cas du régime limité par la réaction de surface.

2 - Cas réel



Figure 5 : Transfert de masse en phase gazeuse

#### LES DIFFERENTS REGIMES DE DEPOTS (1)

La couche limite : Fraction d'espace gazeux au voisinage de la surface solide où la composition des gaz diffère de la composition moyenne globale de la phase gazeuse.



Figure 6 : Variation des concentrations des différentes espèces gazeuses dans la couche limite

- La diffusion en phase gazeuse des réactifs est liée au coefficient de diffusion D de ces espèces réactives et au gradient de concentration existant dans la couche limite.

La densité des espèces présentes dans la couche limite empêche la diffusion des espèces réactives, ce qui diminue l'apport de ces dernières.

Conséquences : La vitesse de croissance ne dépend plus uniquement de la température, mais aussi de la diffusion d'espèces réactives à travers cette couche limite.

## LES DIFFERENTS REGIMES DE DEPOTS (2)

Fonction du rapport : Apport d'espèces à travers la couche limite sur la consommation de ces espèces par la réaction de surface



Figure 7 : Variation de la vitesse de dépôt CVD en fonction de la température [2]

- (1) Fonction de la pression
  - Configuration spéciale des réacteurs
- (2) Fonction de la température
   Indépendant de la densité d'espèces, nombre de substrats important
- Faible pression (diffusivité des espèces augmente) LPCVD

#### LES DIFFERENTS SYSTEMES CVD

Plusieurs catégories en fonction de la valeur de différents paramètres (pression, système de chauffage, type d'énergie)

- Pression : Pression atmosphérique (APCVD) Faible pression (LPCVD)
- Système de chauffage : Mur chaud, mur froid
- Type d'énergie : Thermique Plasma (création et activation d'espèces par plasma) PECVD



Figure 8 : Représentation générale des différents systèmes [2]

### SYSTEME APCVD

#### PRINCIPE



#### Figure 9 : (a) Horizontal tube APCVD reactor, (b) Gas injector type continuous processing APCVD reactors, (c) Plenum-type continuous processing APCVD reactor [2]

Paramètres de contrôle : Température, débit des gaz, durée

Remarques : Contrôle de l'arrivée des espèces de manière rigoureusement identique sur toutes les plaquettes Consommation d'espèces gazeuses importantes

#### SYSTEME LPCVD

#### PRINCIPE



Figure 10 : (a) End feed LPCVD reactor, (b) Distributed-feed LPCVD reactor<sup>2</sup>. Reprinted with permission of Semiconductor International [2]

**Remarques:** 

• faible pression  $\Uparrow$  diffusivité importante des espèces à travers la couche limite (x 1000 par rapport au APCVD, croissance du film uniquement limité par la réaction de surface)

Paramètres de contrôle : Température, débit des gaz, pression, durée

Avantages : Possibilité d'introduire de nombreuses plaquettes

#### **SYSTEME PECVD 1**

#### PRINCIPE



Figure 11 : (a) Radial flow reactor's inward flow (Reinberg design). Reprinted with permission of Semiconductor International<sup>13</sup> (b) Single wafer PECVD reactor. Courtesy of CVD Spectrum, In. [2]

#### **SYSTEME PECVD 2**



Figure 12 : (a) Long, multiple plate reactor generates plasma between the wafers facing each other on graphite electrodes<sup>14</sup>, (b) Cross section of electrode assembly and wafers shown in (a). Reprinted with permission of Solid State Technology, published by Technical Publishing, a company of Dun & Bradstreet, (c) Photograph of tubular PECVD reactor. Courtesy of Pacific Western Systems [2]

Paramètres : Température, débit des gaz, pression, puissance, durée

# **CARACTERISATION DES FILMS CVD**

#### **Caractéristiques générales**

- Indice optique (Stoechiométrie, composition)

- Uniformité sur plaquette, sur la charge

- Vitesse de croissance

- Structure cristalline

- Rugosité

- Contraintes

Etude du matériau

- Isolant : tenue en tension

#### **Moyens techniques**

Ellipsomètre (non destructif)

Profilomètre (destructif)

Microscope Electronique à Balayage Diffraction d'électrons, de rayons x

Ellipsomètre Profilomètre

Profilomètre

Profilomètre

Test électrique de capacités

**Résistivimètre** (Mesure 4 pointes) Test électrique de résistances

#### Utilisation dans le procédé de fabrication

- Recouvrement de marche

- Tenue aux produits chimiques

Test de gravure

MEB

#### - Conducteur : résistivité

#### **RECOUVREMENT DE MARCHE**



Figure 13 : Step coverage of deposited films (a) Uniform coverage resulting from rapid surface migration, (b) Nonconformal step coverage for long mean free path and no surface migration, (c) Nonconformal step coverage for short mean free path and no surface migration [1]

## AVANTAGES ET INCONVENIENTS DES DIFFERENTS SYSTEMES CVD

#### Table 1 : Characteristics and applications of CVD reactors [2]

| PROCESS                    | ADVANTAGES                                                                                    | DISADVANTAGES                                                       | APPLICATIONS                                                                                                  |
|----------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| APCVD<br>(Low Temperature) | Simple reactor,<br>Fast deposition,<br>Low temperature                                        | Poor step coverage,<br>Particle contamination                       | Low temperature<br>Oxides, both<br>doped and<br>undoped                                                       |
| LPCVD                      | Excellent purity<br>and uniformity,<br>Conformal step<br>coverage,<br>large wafer<br>capacity | High temperature<br>Low deposition rate                             | High temperature<br>Oxides, both<br>doped and<br>undoped, silicon<br>nitride, poly-Si, W,<br>WSi <sub>2</sub> |
| PECVD                      | Low temperature,<br>Fast deposition,<br>Good step coverage                                    | Chemical (e.g. H <sub>2</sub> ) and<br>particulate<br>contamination | Low temperature<br>Insulators over<br>metals<br>Passivation<br>(nitride)                                      |

# **EXEMPLES DE DEPOTS CVD**

## Table 2 : CVD deposition reactions [2]

| PRODUCT            | REACTANTS                                                                                                                                                                                                                       | METHO<br>D                                | TEMP<br>(°C)                                        | COMMENTS                                                                          |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------|
| Polysilicon        | SiH4                                                                                                                                                                                                                            | LPCVD                                     | 580-650                                             | May be in situ doped                                                              |
| Silicon<br>Nitride | SiH4 + NH3<br>SiCl2H2 + NH3<br>SiH4 + NH3<br>SiH4 + N2                                                                                                                                                                          | LPCVD<br>LPCVD<br>PECVD<br>PECVD          | 700-900<br>650-750<br>200-350<br>200-350            |                                                                                   |
| SiO <sub>2</sub>   | SiH <sub>4</sub> + O <sub>2</sub><br>SiH <sub>4</sub> + O <sub>2</sub><br>SiH <sub>4</sub> + N <sub>2</sub> O<br>Si(OC <sub>2</sub> H <sub>5</sub> ) <sub>4</sub> [TEOS]<br>SiCl <sub>2</sub> H <sub>2</sub> + N <sub>2</sub> O | APCVD<br>PECVD<br>PECVD<br>LPCVD<br>LPCVD | 300-500<br>200-350<br>200-350<br>650-750<br>850-900 | Poor step coverage<br>Good step coverage<br>Liquid source, conformal<br>Conformal |
| Doped SiO₂         | $SiH_4 + O_2 + PH_3$<br>$SiH_4 + O_2 + PH_3$<br>$SiH_4 + O_2 + PH_3 + B_2H_6$<br>$SiH_4 + O_2 + PH_3 + B_2H_6$                                                                                                                  | APCVD<br>PECVD<br>APCVD<br>PECVD          | 300-500<br>300-500<br>300-500<br>300-500            | PSG<br>PSG<br>BPSG, low temperature flow<br>BPSG, low temperature flow            |

# COMPARAISON DES CARACTERISTIQUES DU Si $_{3}N_{4}$ REALISE EN PE-CVD ET HT-CVD-NP

| Property                                  | HT-CVD-NP                                      | PE-CVD-LP                                     |
|-------------------------------------------|------------------------------------------------|-----------------------------------------------|
| <b>F</b> 5                                | 900°C                                          | 300°C                                         |
|                                           |                                                |                                               |
| Composition                               | $Si_3N_4$                                      | Si <sub>x</sub> N <sub>v</sub> H <sub>z</sub> |
| Si/N ratio                                | 0.75                                           | 0.8-1.0                                       |
| Density                                   | 2.8-3.1 g/cm <sup>3</sup>                      | 2.5-2.8 g/cm <sup>3</sup>                     |
| Refractive index                          | 2.0-2.1                                        | 2.0-2.1                                       |
| Dielectric constant                       | 6-7                                            | 6-9                                           |
| Dielectric strength                       | 1 x 10 <sup>7</sup> V/cm                       | 6 x 10 <sup>6</sup> V/cm                      |
| Bulk resistivity                          | 10 <sup>15</sup> -10 <sup>17</sup> ohms/cm     | 10 <sup>15</sup> ohms/cm                      |
| Surface resistivity                       | > 10 <sup>13</sup> ohms/square                 | 1 x 10 <sup>13</sup> ohms/square              |
| Stress at 23°C on Si                      | 1.2-1.8 x 10 <sup>10</sup> dyn/cm <sup>2</sup> | 1-8 x 10 <sup>9</sup> dyn/cm <sup>2</sup>     |
|                                           | (tensile)                                      | (compressive)                                 |
| Thermal expansion                         | 4 x 10-6/°C                                    | $> 4 < 7 \times 10^{-6}/^{\circ}C$            |
| Color, transmitted                        | None                                           | Yellow                                        |
| Step coverage                             | Fair                                           | Conformal                                     |
| H <sub>2</sub> O permeability             | Zero                                           | Low-none                                      |
| Thermal stability                         | Excellent                                      | Variable > 400°C                              |
| Solution etch rate                        |                                                |                                               |
| HFB 20-25°C                               | 10-15 Å/min                                    | 200-300 Å/min                                 |
| <b>49% HF 23°C</b>                        | 80 Å/min                                       | 1500-3000 Å/min                               |
| 85 % H <sub>3</sub> PO <sub>4</sub> 155°C | 15 Å/min                                       | 100-200 Å/min                                 |
| 85 % H <sub>3</sub> PO <sub>4</sub> 180°C | 120 Å/min                                      | 600-1000 Å/min                                |
| Plasma etch rate                          |                                                |                                               |
| 70 % CF4/30 % O2,                         |                                                |                                               |
| 150 W, 100°C                              | 200 Å/min                                      | 500 Å/min                                     |
| Na <sup>+</sup> penetration               | < 100 Å                                        | < 100 Å                                       |
| Na <sup>+</sup> retained in top 100       | <b>&gt; 99</b> %                               | > 99 %                                        |
| Å                                         |                                                |                                               |
| IR absorption                             | ~870 cm <sup>-1</sup>                          | ~830 cm <sup>-1</sup>                         |
| Si-N max                                  | -                                              | 2180 cm <sup>-1</sup>                         |
| Si-H minor                                |                                                |                                               |
|                                           |                                                |                                               |

Table 3 : Properties of PECVD silicon nitride and high temperature CVD nitride [2]

## CARACTERISTIQUES DES DIFFERENTS DEPOTS CVD (1)ASM [13]

#### PECVD

| Process                                                 | <u>Temps</u> | Dep. rate | <u>Uni</u>    | iformity | <u>/(</u> ±%) |
|---------------------------------------------------------|--------------|-----------|---------------|----------|---------------|
|                                                         | (°C)         | (Å/min)   | p/p<br>(worst | w/w )    | r/r           |
| Nitride                                                 | 380          | 200       | 5             | 5        | 5             |
| (N <sub>2</sub> /SiH <sub>4</sub> /NH <sub>3</sub>      |              |           |               |          |               |
| Oxyde                                                   | 380          | 360       | 5             | 5        | 5             |
| $(N_2/SiH_4/NO)$                                        |              |           |               |          |               |
| PSG                                                     | 380          | 360       | 5             | 5        | 5             |
| (N <sub>2</sub> /SiH <sub>4</sub> /NO/PH <sub>3</sub> ) |              |           |               |          |               |
| BPSG                                                    | 380          | 360       | 5             | 5        | 5             |
| $(N_2/SIH_4/N_0/PH_3/B_2H_6)$                           |              |           |               |          |               |
| Amorphous Silicon                                       | 580          | -         | -             | -        | -             |
| (N <sub>2</sub> /SiH <sub>4</sub> /Ar)                  |              |           |               |          |               |
| Oxynitride                                              | 380          | 150       | 5             | 5        | 5             |
| $(N_2/SiH_4/NH_3/N_2O)$                                 |              |           |               |          |               |
| TEOS                                                    | 380          | -         | -             | -        | -             |
| (N <sub>2</sub> /O <sub>2</sub> /Ar/TEOS)               |              |           |               |          |               |

The PECVD processes are guaranteed for the following loadsize :

| <u>Wafer size</u> | <u>Plat</u><br>Total load | <u>e boat</u><br>Guarantee | <u>Disk boat</u><br>Total loadGuara |    |  |
|-------------------|---------------------------|----------------------------|-------------------------------------|----|--|
| 3′′ - 100 mm      | 56                        | 40                         | 34                                  | 25 |  |
| 125mm             | 42                        | 28                         | 34                                  | 25 |  |
| 150mm             | -                         | -                          | 34                                  | 25 |  |

#### **Définitions**:

- p/p (worst) point to point uniformity : This uniformity is calculated from the readings in the center of the wafer and on 4 positions, 6mm from the edge (10 mm for uncoated plasma plate boats), 90°C rotated with respect to each other. The point to point uniformities over all three runs fulfil the process guarantee.
- w/w Wafer to wafer uniformity : This uniformity is calculated from the center readings of the test wafers in the run.
- r/r Run to run uniformity : This uniformity is calculated from the average of the center readings from each of 3 consecutive runs. The position of the test wafers is the same in all 3 runs.

wafer orientation : Wafer must be orientated with major flat horizontal.

Table 4 : Characteristics of CVD films.

## CARACTERISTIQUES DES DIFFERENTS DEPOTS CVD (2) ASM [13]

| LPCVD                                                                              |                      |                      |                        |                             |                              |                     |                        |                      |
|------------------------------------------------------------------------------------|----------------------|----------------------|------------------------|-----------------------------|------------------------------|---------------------|------------------------|----------------------|
| <u>Process</u>                                                                     | <u>Temps</u><br>(°C) | <u>Wafe</u><br>Total | <u>r load</u><br>Guar. | <u>Dep. rate</u><br>(Å/min) | <u>Unif</u><br>p/p<br>(worst | <u>formi</u><br>w/w | <u>ty (</u> ±%)<br>r/r | <u>Ref.</u><br>index |
| Polysilicon<br>(N <sub>2</sub> /SiH <sub>4</sub> )                                 | 620                  | 50                   | 40                     | 80                          | 3                            | 3                   | 3                      | -                    |
| Silicon Nitride<br>(N <sub>2</sub> /DCS/NH <sub>3</sub> )                          | 775                  | 50                   | 40                     | 35                          | 3                            | 3                   | 3                      | 2.00<br>(± 0.02)     |
| HTO<br>(N2/DCS/N2O)                                                                | 900                  | 50                   | 40                     | 60                          | 5                            | 4                   | 4                      | 1.44<br>(± 0.02)     |
| TEOS (undoped)<br>(N <sub>2</sub> /TEOS)                                           | 725                  | 50                   | 40                     | 100                         | 4                            | 3                   | 3                      | 1.45<br>(± 0.02)     |
| Boron doped Poly<br>(N <sub>2</sub> /SiH <sub>4</sub> /BCl <sub>2</sub> /Ar)       | 590                  | 50                   | 40                     | 60                          | 5                            | 5                   | 5                      | -                    |
| Oxynitride                                                                         | 775<br>))            | 50                   | 40                     | 45                          | 5                            | 4                   | 4                      | -                    |
| Sipos<br>(N <sub>2</sub> /SiH <sub>4</sub> /N <sub>2</sub> O)<br>Caged Processes   | 600                  | 50                   | 40                     | 40-100                      | 4                            | 4                   | 4                      | -                    |
| Quartz LTO<br>(N2/SiH4/O2)                                                         | 420                  | 44                   | 20                     | 130                         | 6                            | 5                   | 3                      | 1.45<br>(+ 0.02)     |
| PSG LTO<br>(N <sub>2</sub> /SiH <sub>4</sub> /O <sub>2</sub> /PH <sub>3</sub> )    | 420                  | 44                   | 20                     | 120                         | 6                            | 5                   | 3                      | -                    |
| BPSG LTO                                                                           | 420<br>MB)           | 44                   | 20                     | 120                         | 6                            | 5                   | 3                      | -                    |
| Phosphorous<br>doped Poly*<br>(N <sub>2</sub> /SiH <sub>4</sub> /PH <sub>3</sub> ) | 580                  | 44                   | 20                     | 40                          | 5                            | 5                   | 4                      | -                    |
| TEOS PSG<br>(N <sub>2</sub> /O <sub>2</sub> /PH <sub>3</sub> /TEOS)                | 660                  | 44                   | 20                     | 100                         | 6                            | 5                   | 3                      | -                    |
| TEOS BPSG<br>(N <sub>2</sub> /O <sub>2</sub> /PH <sub>3</sub> /TEOS/               | 660<br>TMB)          | 44                   | 20                     | 100                         | 6                            | 5                   | 3                      | -                    |

\* Minimum resistivity : 10-15  $\Omega$ /square for 5000 Å film after N<sub>2</sub> anneal for 30 min at 1000°C.

Table 5 : Characteristics of CVD films.

## AUTRES COUCHES UTILISEES EN MICROELECTRONIQUE DEPOSEES PAR CVD

#### **Couches diélectriques**

• Les oxynitrures [SiO<sub>x</sub>N<sub>y</sub> (H<sub>z</sub>)]

Gaz réactifs : SiH<sub>4</sub> + O<sub>2</sub> + NH<sub>3</sub>

Utilisation :

- : Dépôts spécifiques pour des couches de faibles contraintes, stable thermiquement, ...
  - Couches de planarisation
  - Isolants entre des pistes d'aluminium
- Le SIPOS [SiO<sub>x</sub>] 0,48 < x < 2

Semi-Insulating Polycristalline Silicon

Gaz réactifs : SiH<sub>4</sub> + O<sub>2</sub>

- Utilisation : Couches actives (émetteur de transistors bipolaires grand gain, injecteur pour les mémoires EPROMS)
  - Couches de passivation

#### **Couches conductrices**

Les siliciures et polysiliciures TiSi<sub>2</sub>, TaSi<sub>2</sub>, MOSi<sub>2</sub>, Wsi<sub>2</sub>

- Gaz réactifs : Composé gazeux fluoré ou chloré du matériau réfractaire (WF<sub>6</sub>, TiCl<sub>4</sub>) + SiH<sub>4</sub>
- Utilisation : Diminuer la résistivité des interconnexions dans les circuits intégrés multicouches (résistivité du silicium polycristallin : dopé de l'ordre du mΩ.cm).

| Material          | Metal + Poly- | Metal + Si | Co-Sputter | Co-         | CVD |
|-------------------|---------------|------------|------------|-------------|-----|
|                   | Si            | crystal    | _          | Evaporation |     |
|                   |               |            |            |             |     |
| TiSi <sub>2</sub> | 13            | 15         | 25         | 21          | 21  |
| TaSi <sub>2</sub> | 35            |            | 50         |             | 38  |
| MoSi <sub>2</sub> | 90            | 15         | 100        | 40          | 120 |
| Wsi <sub>2</sub>  |               |            | 70         | 30          | 40  |
| PtSi              | 28            |            | 35         |             |     |
|                   |               |            |            |             |     |

Tableau 6 : Résistivités de siliciures recuits à T  $\leq$  1000°C (en  $\mu$ Ω.cm) [2]

| - Low electrical resistivity          | - Stable contact formation to       |
|---------------------------------------|-------------------------------------|
| - Ease of formation                   | aluminium metallization             |
| -Ease of fine line pattern transfer   | - Excellent adhesion and low stress |
| - Controlled oxidation properties and | - Good electromigration resistance  |
| stability in an oxidizing ambient     | - Ohmic and low contact resistance  |
| - High temperature stability          | - Stability throughout subsequent   |
| - Smooth surface features             | high-temperature processing,        |
| - Good corrosion resistance           | including ion implant and diffusion |
|                                       |                                     |

Tableau 7 : Propriétés demandées aux siliciures pour la VLSI



## PRINCIPE D'UN DEBITMETRE MASSIQUE



Figure 14 : (a) Operating principle and (b) Cutaway drawing of a mass flow controller. Courtesy of Sierra Instruments [2]

 $\begin{array}{ll} m_f & : & débit \mbox{ massique} \\ W_h & : & \mbox{ puissance de chauffe} \\ k & : & \mbox{ constante intégrant la capacité calorifique du gaz} \\ \Delta T = T_2 - T_1 \\ Débit \mbox{ nul } : T_1 = T_2 \\ Présence \mbox{ de débit } : \Delta T \lor \end{array}$ 

 $m_f = (k W_h \Delta T)^{1.25}$ 

# LE SILICIUM POLYCRISTALLIN

#### Caractéristique du silicium polycristallin

- Couche formée de crystallites de l'ordre de 1000 Å séparées par des joints de grains
- Structure amorphe pour des couches élaborées à des températures inférieures à 580°C
- Propriétés mécaniques proches de celles du silicium monocristallin

Utilisation du silicium polycristallin

- En technologie CMOS : grille (technique de l'auto-alignement)
- En circuit intégré multicouches : conducteur pour les interconnexions
- En mécatronique : microstructure (ex : cantilever), actionneur (ex : micromoteur)

#### **Réaction chimique [2]**

Les différentes réactions chimiques :

SiH<sub>4</sub> + site en surface = SiH<sub>4</sub> (adsorbé) SiH<sub>4</sub> (adsorbé) = SiH<sub>2</sub> (adsorbé) + H<sub>2</sub> (gaz) SiH<sub>2</sub> (adatom) = Si (solide) + H<sub>2</sub> (gaz)

Réaction chimique globale [2]

 $SiH_4$  (vapeur) = Si (solide) +  $2H_2$  (gaz)

# Intérêt du Si<sub>3</sub>N<sub>4</sub> et du Si Poly (1) [14]



Figure 17  $\Box$  Metal-Gate CMOS process. (a) p-Well mask ; (b) first boron deposition and diffusion oxidation ; (c) pchannel source and drain mask ; (d) second boron deposition and diffusion oxidation ; (e) n-channel source and drain mask ; (f) phosphorus deposition and diffusion oxidation ; (d) gate mask ; (h) gate oxidation and contact mask ; (i) metalization and metal mask. (After Ref. 2)



Figure 18  $\Box$ Silicon-gate LOCOS NMOS process. (a) Active area (nitride) mask and field implant; (b) field oxidation; (c) nitride-oxide strip and gate oxidation; (d) poly deposition; (e) poly mask; (f) source and drain diffusion; (g) oxide deposition and contact mask; (h) metal deposition and metal mask.

## CARACTERISATION PHYSIQUE AU MICROSCOPE ELECTRONIQUE DES GRAINS DE SILICIUM POLYCRISTALLIN



Figure 20 : Vue de dessus d'une couche de Si polycristallin

Conditions du dépôt

| dSi2H6 | : | 100 SCCM  |
|--------|---|-----------|
| Т      | : | 520°C     |
| Р      | : | 200 mT    |
| V      | : | 100 Å/min |

Figure 21 : Vue en coupe d'une couche de silicium polycristallin



# CINETIQUE DE CROISSANCE DU SI-LPCVD A PARTIR DU SILANE $(SiH_4)$

- Td = 520°C D = 100 cc/mn P = 300 mT Vitesse de dépôt : 9 Å/mn • Td = 555°C D = 100 cc/mn P = 300 mT Vitesse de dépôt : 28.5 Å/mn 160 Å/mn (Si<sub>2</sub>H<sub>6</sub>) • Td = 580°C D = 40 cc/mn P = 300 mT Vitesse de dépôt : 57 Å/mn
  - $Td = 620^{\circ}C$  D = 100 cc/mn P = 300 mT

Vitesse de dépôt : 129 Å/mn



Figure 22 : Vitesse de dépôt en fonction de la température [12]

## MORPHOLOGIE DU SILICIUM OBTENU EN FONCTION DES GAZ ET DE LA TEMPERATURE DU PROCEDE

Table 8 : Gases and temperatures employed for PECVD of polycrystalline and epitaxial silicon [5]

| Source gas mixture     | Deposition temperature<br>(°C) | Morphology                                     |
|------------------------|--------------------------------|------------------------------------------------|
| SiH2Cl2/Arª            | 625                            | Polycristalline<br>~100 Å grain size           |
| SiH4/He <sup>b</sup>   | 400                            | Polycristalline<br>~500 Å grain size           |
| SiH4/Ar <sup>c</sup>   | 450                            | Polycristalline<br>few hundred Å<br>grain size |
| SiH4/H2 <sup>d</sup>   | 600                            | Polycristalline                                |
| SiH4/H2 <sup>b</sup>   | 750-900                        | Single crystal                                 |
| SiH4/H2 <sup>e</sup>   | 800-900                        | Single crystal                                 |
| SiH4 <sup>f</sup>      | 760                            | Single crystal                                 |
| ${f SiH_4}^{ m g}$     | 775                            | Single crystal                                 |
| SiH4/GeH4 <sup>i</sup> | 600-850                        | Single crystal                                 |

#### DOPAGE DU SILICIUM POLYCRISTALLIN



Figure 23 : Les effets des dopants sur la vitesse de dépôt à 610°C [1]



Figure 24 : La résistivité du Si polycristallin dopé P

# LE NITRURE DE SILICIUM (Si<sub>3</sub>N<sub>4</sub>)

#### Caractéristiques du nitrure de silicium

• matériau amorphe diélectrique

#### Utilisation du nitrure de silicium

Procédés «Microélectroniques»

- couche de passivation
  - imperméable au Na et H<sub>2</sub>O
  - faibles contraintes
  - recouvrement correct
  - faible densité de défauts (pinhole)
- couche de masquage pour l'oxydation sélective (procédé du LOCOS)
- couche diélectrique pour structures MNOS

Procédés «Microsystèmes»

• couche de masquage pour la gravure du silicium

#### **Réaction chimique**

 $3 \operatorname{Si} H_2 \operatorname{Cl}_2 + 10 \operatorname{NH}_3 \twoheadrightarrow \operatorname{Si}_3 \operatorname{N}_4 + 6 \operatorname{NH}_4 \operatorname{Cl} + 6 \operatorname{H}_2$ 

La croissance et les propriétés du  $Si_3N_4$  (vitesse de dépôt, résistance aux acides, contraintes, indice de réfraction) sont fonction du rapport des débits du dichlorosilane et de l'ammoniac.

# CINETIQUE DE CROISSANCE DU Si $_{3}N_{4}$

Tableau 7 : Cinétique de croissance du  $Si_3N_4$  LPCVD à partir du dichlorosilane (SiH<sub>2</sub>Cl<sub>2</sub>) et de l'ammoniac (NH<sub>3</sub>)

| T (°C) | SiH2Cl2<br>(SCCM) | NH₃<br>(SCCM) | P (mt) | V Å/mn | Uniformit<br>é sur une<br>plaque (%) | Uniformit<br>é sur le<br>Run de 10<br>plaques de<br>3'' |
|--------|-------------------|---------------|--------|--------|--------------------------------------|---------------------------------------------------------|
| 700    | 20                | 150           | 390    | 9,3    | 3,5                                  | 4,5                                                     |
| 750    | 20                | 150           | 390    | 23,5   | 2,4                                  | 4,7                                                     |
| 800    | 20                | 150           | 390    | 57,4   | 5,7                                  | 6,3                                                     |

#### CARACTERISTIQUES DU Si<sub>3</sub>N<sub>4</sub> EN FONCTION DU RAPPORT Si/N (1)



Figure 26a : Relation between refractive index and reactant gas ration SiH<sub>2</sub>Cl<sub>2</sub>/ NH<sub>3</sub>. Silicon nitride was deposited in temperature range of 750 ~850°C [6]

Figure 26b : Relation between nitride etch rates in buffered HF and film refractive index [6]

#### **EXEMPLE D'UN ACTIONNEUR (MICROMOTEUR) [15]**





Figure 27 : Le micromoteur a)

- a) descriptif
- b) vue générale
- c) vue en coupe
- d) pistes du stator (500 μm de longueur, 1 μm d'épaisseur) libérées du support

## NOUVELLES SOURCES GAZEUSES ET AUTRES TECHNIQUES DE DEPOT CVD

#### • OMCVD

- Pyrolise de molécules organométalliques (l'élément à déposer est lié à des groupements organiques)
   Ex : Le tétraéthylsilane (C<sub>2</sub>H<sub>5</sub>)<sub>4</sub>Si
- Les Alkyles : (Cn H<sub>2</sub>n + 1)M
   Présentation sous forme de liquide entre 20°C et + 30°C
   Tension de vapeurs élevées
- CVD assisté par photons



GENUS

RIXTRON



# **Atomic Vapor Deposition - AVD®**





## AVD<sup>®</sup>, CVD and MOCVD Example Material Systems



## EFFET DES CONTRAINTES INTERNES SUR LES COUCHES MINCES (1)



Figure 26: Vue de dessus d'un dépôt fissuré

Figure 27: Représentation des effets de contraintes sur une couche



## EFFET DES CONTRAINTES INTERNES SUR LES COUCHES MINCES (2)



a) bras de levier courbé sous l'effet d'un fort gradient de contrainte





Figure 28: Représentation des effets de contraintes sur des membranes





Figure 29: Vue de membranes SiO2 au MEB

# **LES CONTRAINTES [8]**

- Caractérisent l'état de déformation des couches
- Contrainte totale :
   σ = σext + σth + σint

Unité : Pa

 σext : contrainte exercée par une couche voisine
 σth : contrainte thermique (croissance)
 σint : contrainte intrinsèque
 t<sub>c</sub> : épaisseur de la couche
 t<sub>s</sub> : épaisseur du substrat



Figure 30 : Couche de Si<sub>3</sub>N<sub>4</sub> et de SiO<sub>2</sub> déposé sur un substrat de Si

• Origines des contraintes

- Chaque matériau possède des caractéristiques propres (propriétés mécaniques et cristallines)

- La différence de ces propriétés induit des contraintes lors de la juxtaposition des matériaux au sein de la structure. Exemple : paramètres de maille cristalline, coefficients de dilatation thermique

 $\begin{array}{l} \sigma_{th} = (\alpha_c - \alpha_s) \Delta T \times \frac{E}{1 - \gamma} \\ \alpha_c & : \mbox{ coefficient de dilatation thermique de la couche} \\ \alpha_s & : \mbox{ coefficient de dilatation thermique du substrat} \end{array}$ 

 $\left(\frac{E}{1-\gamma}\right)$ : Module d'élasticité du substrat G

E : module d'Young du substrat γ : coefficient de Poisson du substrat  $\frac{E}{1-\gamma} = 2,290 \times 10^{12} \text{ dynes/cm}^2$  (Si) (230 GPa)  $\sigma = G.\varepsilon$  ε Déformation

## **MESURES DES CONTRAINTES (1)**

- Effet des contraintes
  - la structure est courbée
  - la couche est craquelée
  - problèmes de vieillissement visible au niveau de l'adhérence
  - effet sur les propriétés des couches
- Caractère



Figure 31 : Evolution des contraintes lors d'un dépôt

## **MESURES DES CONTRAINTES (2)**

• Mesure (profilomètre [8], interféromètre, rayons X, ...)

- courbure de rayon : R



Figure 32 : Représentation schématique de la courbure pour la mesure

 $\sigma$  = G.ε ε Déformation

Formule de STONEY :

$$\sigma = \frac{1}{6R} \frac{E}{(1-\gamma)} \frac{t_s^2}{t_c}$$
$$R = \left(\frac{L^2}{4} + B^2\right) \frac{1}{2B} = \frac{L^2}{8B} \text{ si } L \implies B$$

L : Longueur de balayage B : Flèche

## **MESURE DES CONTRAINTES (3)**



Figure 33 : Silicon overhang perspectives. (a) Top view of stripe edge ; (b) cross section through line A-A' ; (c) edge-on view along line A-A' showing relaxed silicon overhang (not to scale for clarity) [10]

| Tableau 8 : Sample properties and measured strain and stress | [10] |
|--------------------------------------------------------------|------|
|--------------------------------------------------------------|------|

| SAMPLE PROPERTIES |            |           |           | MEASUREMENTS |               |             |
|-------------------|------------|-----------|-----------|--------------|---------------|-------------|
| Sample            | Silicon    | Silicon   | Oxide     | Unannealed   | Compressive   | Compressive |
|                   | type/oxide | thickness | thickness | (U)          | strain (-ε)   | stress (-σ) |
|                   | type       |           |           | Annealed     | (10-3)        | (109        |
|                   |            |           |           | (A)          |               | dynes/cm²)  |
| 1                 | Poly-      | 230 nm    | 3.5 µm    | U            | $6.5 \pm 0.5$ | 15 ± 1      |
|                   | Si/PSG     |           |           | Α            | $4 \pm 0.5$   | 9±1         |
| 2                 | Amorph     | 300 nm    | 1.1 µm    | U            | $4 \pm 0.5$   | 9±1         |
|                   | Si/thermal |           |           | Α            | < 0.05        | < 0.1       |
| 3                 | Poly-      | 800 nm    | 1.7 µm    | U            | $4.5 \pm 0.5$ | 9±1         |
|                   | Si/PSG     |           |           | Α            | < 0.05        | < 0.1       |
| 4                 | Poly-      | 1.45 µm   | 1.1 µm    | U            | $4.5 \pm 0.5$ | 10 ± 1      |
|                   | Si/PSG     |           |           | A            | < 0.05        | < 0.1       |
| 5                 | Amorph     | 1.65 µm   | 1.1 µm    | U            | $4.5 \pm 0.5$ | 9±1         |
|                   | Si/thermal |           |           | Α            | < 0.05        | < 0.1       |

Annealing step under N<sub>2</sub> Flow T : 1100°C t : 20 min.

#### EVOLUTION DES CONTRAINTES EN FONCTION DES CARACTERISTIQUES DU DEPOT



Figure 34 : Residual stress versus gaseous ratio for different temperatures [17]



Figure 35 : Residual stress versus SiN<sub>x</sub> stoichiometry [17])



Figure 36 : Relation between refractive index and residual stress for films [6]

## CONTRAINTE ET EPAISSEUR D'UNE MEMBRANE BICOUCHE SiNx sur SiO2 [16]







Figure 38 : Abaque d'épaisseur et de contrainte pour l'association en bicouche d'oxyde et de nitrure

$$\sigma = \frac{\sum_{i} \sigma_{i} e_{i}}{\sum_{i} e_{i}}$$
$$e_{ni} = -e_{ox} \frac{\sigma - \sigma_{ox}}{\sigma - \sigma_{ni}}$$

# Examples of ultrathin dielectric membranes



WAS-LAA

# PROTOTYPE D'UN REACTEUR CVD **SPECIFIQUE AUX MICROSYSTEMES [18]**

Principe (Positionnement des plaquettes par rapport au flux de gaz)





Figure 39 :Tube standard Vue de dessus du prototype





#### REFERENCES

- [1] S.M. Sze, VLSI Technology
- [2] S. Wolf and R.N. Tauber Silicon processing for the VLSI era, volume 1, Process Technology

#### [3] F. Maury

Les dépôts chimiques en phase vapeur (Ecole Nationale Supérieure de Chimie de Toulouse)

- [4] Handbook of thin-film deposition processes and techniques. Principles, methods, equipment and applications. Edited by Klaus K. Schuegraf
- [5] Semiconductor materials and process technology handbook for VLSI and ULSI edited by Gary E. McGuire
- [6] Silicon nitride single-layer X-ray mask.
   Misao Sckimoto, Hideo Yoshihara and Takashi Ohkubo
   J. Vac. Sci. Technol., vol 21, n°4, Nov-Dec 1982
- [7] Développement et caractérisation d'un système LPCVD pour le dépôt de Si Poly et de Si<sub>3</sub>N<sub>4</sub> à partir de SiH<sub>4</sub> et de Si<sub>2</sub>H<sub>6</sub>,
   P. Fadel, B. Rousset, P. Taurines
- [8] Profiler applications note #1. Société Tencor Notice du profilomètre « Tencor P1 »
- [9] The composition and physical properties of LPCVD silicon nitride deposited with different NH<sub>3</sub>/SiH<sub>2</sub>Cl<sub>2</sub> gas ratios Paihung Pan and Wayne Berry, J. Electrochem. Soc., vol 132, n°12, December 1985
- [10] Stress in polycristalline and amorphous silicon thin films R.T. Howe and R.S. Muller, J. Appl. Phys. 54 (8), August 1983
- [11] Thèse de Lydie Mercadère au LAAS, n°88169, 1988 Propriétés cristallines et électroniques des dépôts de silicium LPCVD dopés in-situ
- [12] Thèse de Philippe Taurines au LAAS, n°91307, 1991
   Faisabilité de structures métal-oxyde-semiconducteur sur films minces de
   Si-LPCVD par procédé technologique à basse température (600°C)

- [13] Notice technique Fours LB45
   A.S.M. France 74, route de St Georges-d'Orques 34990 Juvignac Montpellier.
- [14] Modern MOS Technology : Process, Devices and Design DEWITT, G. ONG. Mc GRAW-HILL INTERNATIONAL EDITIONS.

[15] First steps towards the fabrication of electrostatic micromotors using SOG. - V. Conédéra, N. Fabre, H. Camon, B. Rousset, H.H. Pham,

C. Solano - Sensors and actuators A Physical Proceedings of Eurosensors VIII. Toulouse, France - September 25-28, 1994.

- [16] Thése de Eric Saint-Etienne au LAAS, n°98532
   Nouvelle filière technologique de circuits micro-ondes coplanaires à faibles pertes et à faible dispersion sur membrane composite d'oxyde et de nitrure de silicium
- [17] Residual stress in low pressure chemical vapor deposition SiNx films deposited from silane and ammonia. P. Temple-Boyer, C. Rossi, E. Saint-Etienne, and E. Scheid
- [18] Boron doped polysilicon deposition In a sector reactor : Specific phenomena and properties. E. Scheid, L. Furgal and H. Vergnes

**Documentation Société AIXTRON**