Privacy-Enhanced Ambient Intelligence

Yves Deswarte deswarte@laas.fr

LAAS-CNRS, Toulouse

New technologies are being developed: useful or practical devices/services

Market created/developed by technology providers: hardware, networks, services, ...

… but most often without privacy concern

Unique ide readable v	entifier for each object, without visibility
Better su traceabili food safe	pply management, stock management, ty for containers/contents, ty, customer support,
>But possib	pility of customer tracing
✤ danger	for privacy !!!

Outlines

Privacy : Definitions

Basic Principles

PETs : Privacy Enhancing Technologies

- Managing Multiple Identities
- Anonymous Communications and Accesses
- Privacy-Preserving Authorization
- o Personal Data Management

di.	ne state or cond sturbed by othe	dition of being free from being observed or r people"
Co Pr to id	ommon Criteria (ivacy = one func provide a user p entity by other (CC V3.1, also ISO 15408) : tional class, with 4 requirements protection against discovery and misuse of users :
0	Anonymity:	ensures that a user may use a resource or service without disclosing the user's identity
0	<u>Pseudonymity</u> :	ensures that a user may use a resource or service without disclosing its user identity, but can still be accountable for that use
0	<u>Unlinkability</u> :	ensures that a user may make multiple uses of resources or services without others being able to link these uses together
	Unobservability	ensures that a user may use a resource or service

Basic Principles

2nd Principle to protect privacy:

Personal Data Minimization

personal information shall be transmitted only to those who need it to achieve the task they have been entrusted with -> "need-to-know"

then destroy/forget

- … on the Internet like in the real world
- with limits: some personal data must be provided to judiciary authorities in case of dispute or investigation (e.g., against money laundering): pseudonymity rather than total anonymity

Links: minimization <--> proportionality and legitimate purpose Ex: Which information may be transmitted by a RFID?

PETs : Privacy-Enhancing Technologies

Managing Multiple Identities

Anonymous Communications and Accesses

Privacy-Preserving Authorization

Managing Personal Data

1st PET: Managing Multiple Identities

Identity = the representation of a physical person

 Reduce/control the links between the person and the personal data (and meta-data): control the *linkability*

o communications and accesses are supposed to be unlinkable

- But: customized/privileged accesses: virtual identity = pseudonym
 - Preferences (ex: meteo) -> "cookies"
 - Different roles -> different pseudonyms
 Ex: tax payer and elector
 - Authentication strength should be adapted to the risks of identity theft (and liablity)
 - Lifetime should be adapted to the needs of linkability
 -> throw-away pseudonyms
- Multiple virtual identities vs. "single-sign-on" Liberty Alliance http://www.projectliberty.org vs. Microsoft Passport

IP@ identifying data

Example :

Return-Path: <Yves.Deswarte@laas.fr> Received: from laas.laas.fr (140.93.0.15) by mail.libertysurf.net (6.5.026)id 3D518DEF00116A4D for yves.deswarte@libertysurf.fr; Tue, 13 Aug 2002 13:44:40 +0200 Received: from [140.93.21.6] (messiaen [140.93.21.6]) by laas.laas.fr (8.12.5/8.12.5) with ESMTP id g7DBid1D001531 for <yves.deswarte@libertysurf.fr>; Tue, 13 Aug 2002 13:44:39 +0200 (CEST) User-Agent: Microsoft-Entourage/10.1.0.2006 Date: Tue, 13 Aug 2002 13:44:38 +0200 Subject: test From: Yves Deswarte <Yves.Deswarte@laas.fr> To: <yves.deswarte@libertysurf.fr> Message-ID: <B97EBDC6.2052%Yves.Deswarte@laas.fr> Mime-version: 1.0 Content-type: text/plain; charset="US-ASCII" Content-transfer-encoding: 7bit

IP@ = sensitive content

IP V6, ad hoc networks, ...

- Tomorrow : IP everywhere (pervasive/ubiquitous computing, ambiant intelligence, sensor networks, RFID, 4G convergence ...)
- every device will have an implicit IP@ unique and permanent (based on a manufacturing serial number)
- Every person will own several devices ...
- ... that will connect to other close devices (ad hoc)
- ... that will identify each other, route their communications, provide contextual information, etc.

Anonymous IP roaming connection

Roaming : Laptop, PDA, mobile phone ...

- 1. Generate a random MAC@
- 2. Obtain a temporary IP@
- 3. Tunnel towards a roaming TTP
- 4. Generate another IP@
- 5. ISP authentication

3th PET: Privacy-Preserving Authorization

 Today: client-server the server grants or denies access/privileges to the client accorded to its claimed identity (possibly verified with authentication mechanisms)

- The server must record personal data: to serve as evidence in case of dispute
- These data may be used for other purposes (customer profiling, direct marketing, customer file trading, black-mailing...)
- Action P3P (W3C) : Platform for Privacy Preferences Project automatic verification of claimed security/privacy policies

∻Inte	rnet transactions involve generally more
than	2 parties
(ex∶	electronic commerce)
Thes	se parties have different (or even sed) interests: mutual suspicion
∻Priva	icy intrusive:
conti	rary to need-to-know principle

Authorization Proofs: Credentials

Multiple Certificates:
 ex: SPKI : attribute/authorization certificates

- Subscription cards, association member cards, ...
- o Driver's license, elector's card, identity card, ...

Problems: linkability (can you trust the CA?, one single public key for several certificates?), managing certificates/keys, authentication, collecting evidence, revocation, ...

Restricted Certificates:

 "Partial Revelation of Certified Identity" Fabrice Boudot, CARDIS 2000

Group Signature

- One single public verification key, *n* private signature keys.
- The group manager distributes a different private key to each group member.
- To prove group membership (i.e., ownership of an anonymous credential), sign a random message that is verifiable with the group verification key.
- Signature verification is a proof of membership, i.e. of credential ownership.
- Only the group manager can recognize who has signed a message.

Least Privilege Principle: any individual should have the minimal rights necessary for the assigned task

 Security Policy and Protection Mechanisms: the personal data keeper is responsible for them

- These data may be very critical: ex: patient medical records
 - Availability: response time (emergency), long time storage
 - Integrity : needed for trust, evidence
 - Confidentiality : privacy <-> economic interests

Privacy = access control + obligations

Conclusions

- Analyze impacts on privacy when designing new technologies
- Obey the principles of personal data sovereignty and minimization

 Develop new personal devices to enhance privacy: personal data storage, identity management, anonymous credentials, e-Cash, ...

Bibliography

- Vves Deswarte, David Powell, Vves Roudier, « Sécurité, protection de la vie privée et disponibilité », chapitre XIII in *Informatique diffuse* (dir. V. Issarny), Arago 31, OFTA, Paris, mai 2007, ISBN 2-906028-17-7, pp. 301-344. http://www.lavoisier.fr/notice/gb/not2.asp?id=360NXOZ3SRLOFJ>
- Sécurité des systèmes d'information V.2, dir. Ludovic Mé & Yves Deswarte, Traité IC2, série Réseaux et télécommunications, Hermès, ISBN 2-7462-1259-5, 390 pp., juin 2006.
- Simone Fischer-Hübner, *IT-Security & Privacy*, LNCS 1958, Springer, 2001.
- Stefan A. Brands, *Rethinking Public Key Infrastructures and Digital Certificates*, MIT Press, 2000.
- Yves Deswarte, Carlos Aguilar-Melchor, "Current and Future Privacy Enhancing Technologies for the Internet", *Annales des Télécommunications*, vol.61, n°3-4, March/April 2006.
- Yves Deswarte, Carlos Aguilar-Melchor, Vincent Nicomette, Matthieu Roy, "Protection de la vie privée sur Internet", *Revue de l'Électricité et de l'Électronique* (*REE*), octobre 2006 (n°9), pp.65-74.
- Carlos Aguilar-Melchor, "Les communications anonymes à faible latence", Thèse de l'Institut National Polytechnique de Toulouse, 4 juillet 2006, LAAS n°06571.