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Brief description

GloptiPoly is written as an open-source, gen-

eral purpose and user-friendly Matlab software

Optionally, problem definition made easier with

Matlab Symbolic Math Toolbox, gateway to

Maple kernel

Gloptipoly solves small to medium non-convex

global optimization problems with multivariate

real-valued polynomial objective functions and

constraints

Software and documentation available at

www.laas.fr/∼henrion/software/gloptipoly

http://www.laas.fr/~henrion/software/gloptipoly


Metholodogy

GloptiPoly builds and solves a hierarchy of suc-

cessive convex linear matrix inequality (LMI)

relaxations of increasing size, whose optima are

guaranteed to converge asymptotically to the

global optimum

Relaxations are build from LMI formulation of

sum-of-squares (SOS) decomposition of mul-

tivariate polynomials

In practice convergence is ensured fast,

typically at 2nd or 3rd LMI relaxation



LMI optimization

LMI are solved by convex linear programming
problems over the cone of positive semidefi-
nite matrices, also called SDP, or semidefinite
programming

Canonical form of an LMI

F (x) = F0 +
m∑

i=1

xiFi � 0

where x is a vector of m decision variables and
matrices Fi = F ?

i are given



Linear matrix inequalities

Historically, the first LMIs appeared around 1890
when Lyapunov showed that the differential
equation

d

dt
x(t) = Ax(t)

is stable (all trajectories converge to zero) iff
there exists a solution to the matrix inequalities

A?P + PA ≺ 0 P = P ? � 0

which are linear in unknown matrix P

Aleksandr Mikhailovich Lyapunov
(1857 Yaroslavl - 1918 Odessa)



Positive polynomials

The set of univariate polynomials that are pos-

itive on the real axis is a convex set that can

be described by an LMI

Idea originating from Shor (1987), related with

Hilbert’s 17th pb about algebraic SOS decom-

positions

David Hilbert
(1862 Königsberg - 1943 Göttingen)

Can be proved with cone duality (Nesterov) or

with theory of moments (Lasserre)



Positive polynomials and LMIs

Example
Global minimization of the polynomial

r(s) = 48− 92s + 56s2 − 13s3 + s4

Global optimum r∗: maximum value of rlow such that
r(s)− rlow is a positive polynomial

We just have to solve the LMI

min 48− 92s1 + 56s2 − 13s3 + s4

s.t.

 1 s1 s2

s1 s2 s3

s2 s3 s4

 ≥ 0

to obtain r∗ = r(5.25) = −12.89
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Solving LMIs

Development of powerful efficient polynomial-

time interior-point algorithms for LP by Kar-

markar in 1984

In 1988 Nesterov and Nemirovskii developed

interior-point methods that apply directly to

LMIs (and even more)

It was then recognized than LMIs can be solved

with convex optimization on a home computer

In 1993 Gahinet and Nemirovskii wrote a com-

mercial Matlab package called the LMI Tool-

box for Matlab

Several powerful freeware solvers are now avail-

able, such as SeDuMi or SDPT3



Applications of LMIs

Various branches of applied mathematics and

engineering sciences, including

•Control theory

•Combinatorial optimization

• Signal processing

•Circuit design

•Algebraic geometry

•Machine learning and statistics

•Mechanical structures

Workshops at LAAS-CNRS on LMI/SDP in

2002 and 2004



LMI relaxation technique

Polynomial optimization problem

min g0(x)
s.t. gk(x) ≥ 0, k = 1, . . . , m

When g? is the global optimum, SOS represen-

tation of positive polynomial

g0(x)− g? = q0(x) +
∑m

k=1 gk(x)qk(x) ≥ 0

where unknowns qk(x) are SOS polynomials

similar to Karush/Kuhn/Tucker multipliers

Using LMI representation of SOS polynomials

successive LMI relaxations are obtained by in-

creasing degrees of sought polynomials qk(x)

Theoretical proof of convergence



LMI relaxations: illustration

Non-convex quadratic problem

max 2x2
1 + 2x2

2 − 2x1x2 − 2x1 − 6x2 + 10
s.t. −x2

1 + 2x1 ≥ 0
−x2

1 − x2
2 + 2x1x2 + 1 ≥ 0

−x2
2 + 6x2 − 8 ≥ 0.

LMI relaxation built by replacing each

monomial xi
1x

j
2 with a new decision variable yij

For example, quadratic expression

−x2
1 − x2

2 + 2x1x2 + 1 ≥ 0

replaced with linear expression

−y20 − y02 + 2y11 + 1 ≥ 0

New decision variables yij satisfy non-convex

relations such as y10y01 = y11 or y20 = y2
10



LMI relaxations: illustration (2)

Relax these non-convex relations by enforcing

LMI constraint

M1
1(y) =

 1 y10 y01
y10 y20 y11
y01 y11 y02

 ≥ 0

Moment or measure matrix of first order

relaxing monomials of degree up to 2

We remove the rank constraint on matrix M1
1(y)

First LMI relaxation of original global

optimization problem is given by

max 2y20 + 2y02 − 2y11 − 2y10 − 6y01 + 10
s.t. −y20 + 2y10 ≥ 0

−y20 − y02 + 2y11 + 1 ≥ 0
−y02 + 6y01 − 8 ≥ 0
M1

1(y) ≥ 0



LMI relaxations: illustration (3)
To build second LMI relaxation, we must increase size
of moment matrix so that it captures expressions of
degrees up to 4

Second order moment matrix reads

M2
2(y) =


1 y10 y01 y20 y11 y02

y10 y20 y11 y30 y21 y12

y01 y11 y02 y21 y12 y03

y20 y30 y21 y40 y31 y22

y11 y21 y12 y31 y22 y13

y02 y12 y03 y22 y13 y04


Constraints are also relaxed with additional variables
Second LMI features feasible set included in first LMI feasible set,
thus providing a tighter relaxation

max 2y20 + 2y02 − 2y11 − 2y10 − 6y01 + 10

s.t.

[ −y20 + 2y10 ? ?
−y30 + 2y20 −y40 + 2y30 ?
−y21 + 2y11 −y31 + 2y12 −y22 + 2y12

]
� 0

(
−y20 − y02
+2y11 + 1

)
? ?(

−y30 − y12
+2y21 + y10

) (
−y40 − y22

+2y31 + y20

)
?(

−y21 − y03
+2y12 + y01

) (
−y31 − y13

+2y22 + y11

) (
−y22 − y04

+2y13 + y02

)
 � 0


−y02 + 6y01 − 8 ? ?(
−y12 + 6y11
−8y10

) (
−y22 + 6y21
−8y20

)
?(

−y03 + 6y02
−8y01

) (
−y13 + 6y12
−8y11

) (
−y04 + 6y03
−8y02

)
 � 0

M2
2(y) � 0



Numerical example (1)

Quadratic problem 3.5 in [Floudas/Pardalos 99]

min −2x1 + x2 − x3

s.t. x1(4x1 − 4x2 + 4x3 − 20) + x2(2x2 − 2x3 + 9)
+x3(2x3 − 13) + 24 ≥ 0

x1 + x2 + x3 ≤ 4, 3x2 + x3 ≤ 6
0 ≤ x1 ≤ 2, 0 ≤ x2, 0 ≤ x3 ≤ 3.

To define this problem with GloptiPoly we use the
following Matlab/Maple script

>> P = defipoly({’min -2*x1+x2-x3’,...
[’x1*(4*x1-4*x2+4*x3-20)+x2*(2*x2-2*x3+9)’ ...
’+x3*(2*x3-13)+24>=0’],...

’x1+x2+x3<=4’, ’3*x2+x3<=6’,...
’0<=x1’, ’x1<=2’, ’0<=x2’, ’0<=x3’, ’x3<=3’}, ...
’x1,x2,x3’);

To solve the first LMI relaxation we type

>> output = gloptipoly(P)
output =

status: 0
crit: -6.0000
sol: {}

Field status = 0 indicates that it is not possible to de-
tect global optimality with this LMI relaxation, hence
crit = -6.0000 is a lower bound on the global optimum



Numerical example (2)

Next we try to solve the second, third and fourth LMI relaxations

>> output = gloptipoly(P,2) >> output = gloptipoly(P,3)
output = output =

status: 0 status: 0
crit: -5.6923 crit: -4.0685
sol: {} sol: {}

>> output = gloptipoly(P,4)
output =

status: 1
crit: -4.0000
sol: {[3x1 double] [3x1 double]}

>> output.sol{:}
ans = ans =

2.0000 0.5000
0.0000 0.0000
0.0000 3.0000

Both second and third LMI relaxations return tighter lower bounds
on the global optimum

Eventually global optimality is reached at fourth LMI relaxation
(certified by status = 1)

GloptiPoly also returns two globally optimal solutions:

x1 = 2, x2 = 0, x3 = 0

and

x1 = 0.5, x2 = 0, x3 = 3

leading to

crit = -4.0000



Numerical example (3)

Number of LMI variables and size of relaxed

LMI problem, hence overall computational time,

increase quickly with relaxation order:

Relaxation LMI Number of Size of
order optimum LMI variables LMI

1 -6.0000 9 24
2 -5.6923 34 228
3 -4.0685 83 1200
4 -4.0000 164 4425
5 -4.0000 285 12936
6 -4.0000 454 32144

..yet fourth LMI relaxation was solved in about

2.5 seconds on a PC Pentium IV 1.6 MHz



Features

General features of GloptiPoly:

• Certificate of global optimality (rank checks)

• Automatic extraction of globally optimal

solutions (multiple eigenvectors)

• 0-1 or ±1 integer constraints on some of the

decision variables (combinatorial optimization

problems)

• Generation of input and output data in

SeDuMi’s format

• Generation of moment matrices associated

with LMI relaxations (rank checks)

• User-defined scaling of decision variables

(to improve numerical behavior)

• Exploits sparsity of polynomial data



Benchmark examples

Continuous problems

Mostly from Floudas/Pardalos 1999 handbook

About 80 % of pbs solved with LMI relaxation

of small order (typically 2 or 3) in less than 3

seconds on a PC Pentium IV at 1.6 MHz with

512 Mb RAM

Six-hump camel back function



Benchmark exmaples
Discrete problems

From Floudas/Pardalos handbook and also
Anjos’ Ph.D (Univ Waterloo)

By perturbing criterion (destroys symmetry)
global convergence ensured on 80 % of pbs
in less than 4 seconds

MAXCUT on antiweb AW 2
9 graph



Benchmark examples

Polynomial systems of equations

From Verschelde’s and Posso databasis
Real coefficients & coeffs only

Out of 59 systems:
• 61 % solved in t < 10 secs
• 20 % solved in 10 < t < 100 secs
• 10 % solved in t ≥ 100 secs
• 9 % out of memory

No criterion optimized
No enumeration of all solutions
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Conclusions

GloptiPoly is a general-purpose software with

a user-friendly interface

Pedagogical flavor, black-box approach,

no expert tuning required to cope with very

distinct applied maths and engineering pbs

Not a competitor to highly specialized codes

for solving polynomial systems of equations or

large combinatorial optimization pbs

Numerical conditioning (Chebyshev basis)

deserves further study


