

Limited Discrepancy Search for flexible shop scheduling

(présentation actualisée pour le séminaire MOGISA du 3 avril 2009)

Pierre López

LAAS-CNRS Toulouse, France

(joint work with A. Ben Hmida, M.-J. Huguet, M. Haouari)

- Some research results in solving scheduling problems, central in supply chain management
- Emphasis on flexible shop problems
 - Adapting **discrepancy-based search methods** for the problems under study
 - Experimental evaluation of the propositions

Scheduling Problems under study

- Disjunctive scheduling
 - Resources = machines
 - One operation at a time on a machine
 - One machine at a time by operation
 - No preemption

Shop problems

- Execution <u>route</u> (routing) = sequence of machines to follow to manufacture a product
- <u>Job</u> = sequence of operations following a given route
- Focus on *flexible* shop problems
 - Resource assignment is not decided a priori
 - Parallel Machine
 - Hybrid Flow Shop (HFS)
 - Flexible Job Shop (FJS)

Parallel machine

Shop problems: Hybrid Flow Shop

Shop pbs: Flexible Job Shop

- As in a Job Shop:
 - Resources = machines: $M=\{M_1,...,M_m\}$
 - Job J_i= sequence of operations O_{i1},...,O_{im}

	M ₂₁	M ₂₂	M ₂₃
	M ₁ (20)		M ₁ (30)
2•	or	M ₁ (25)	M ₂ (15)
	M ₂ (25)		or M ₃ (25)

But:

J

Shop pbs: Flexible Job Shop

- As in a Job Shop:
 - Resources = machines: $M = \{M_1, \dots, M_m\}$
 - Job J_i = sequence of operations $O_{i1},...,O_{im}$
- Alternative (unrelated) machines can process an operation
 - O_{is} on any machine among $M_{is} \subseteq M$;
 - ∀i, ∩ M_{is} may be non-empty ("recirculation")

	M ₂₁	M ₂₂	M ₂₃
J ₂ :	M ₁ (20) or M ₂ (25)	M ₁ (25)	$M_{1}(30) or M_{2}(15) or M_{3}(25)$

Shop pbs: Flexible Job Shop

- As in a Job Shop:
 - Resources = machines: $M = \{M_1, \dots, M_m\}$
 - Job J_i = sequence of operations $O_{i1},...,O_{im}$

- But:
 - Alternative (unrelated) machines can process an operation
 - O_{is} on any machine among $M_{is} \subseteq M$;
 - $\forall i, \cap M_{is}$ may be non-empty ("recirculation")
- Application: semiconductor industry (wafer fabrication)
 - Double problem:
 - Select a machine for each operation
 - Determine a start time for each operation

min C_{\max}

Solving scheduling problems

Exact methods

- dynamic programming
- integer programming
- tree search

Heuristics

- dispatching rules
- greedy algorithms

Metaheuristics

- Tabu search
- genetic algorithms
- ant colony optimization
- **Constraint programming**

Solving scheduling problems

Exact methods

dynamic programming
integer programming
tree search
Heuristics
dispatching rules
greedy algorithms
Metaheuristics
1 Tabu search
genetic algorithms
ant colony optimization
Constraint programming

Background

- NP-hard problems [Vaessens, 1995]
- Hybrid Flow Shop (HFS)
 - 2-HFS with $M^{(s)}=2$ for $s \in \{1,2\}$ is NP-hard: [Gupta, 1988]
 - Exact methods: [Brah & Hunsucker, 1991]; [Portmann *et al.*, 1992]; [Moursli & Pochet, 2000]; [Carlier & Néron, 2000]; [Lin & Liao, 2003]
 - Lower bounds: [Santos et al., 1995]; [Moursli & Pochet, 2000]; [Carlier & Néron, 2000]
 - Heuristics: [Brah & Loo, 1999]; [Engin & Döyen, 2004]
- Flexible Job Shop (FJS)
 - First presented by [Brucker & Schlie, 1990]
 - FJSP is NP-Hard in general [Vaessens, 1995]
 - Greedy and GA algorithms were proposed (many references)
 - Best results obtained by Tabu Search [Mastrolilli & Gambardella, 2000]
 - JMPM | | C_{max} is strongly NP-hard [Brucker, 2004]

Discrepancy-based search methods (1)

- Limited Discrepancy Search LDS [Harvey & Ginsberg, 1995]
 - Is a problem satisfiable? → Satisfaction
 - Iterative tree search method
 - Instantiation heuristic to guide the search
 (the initial global instantiation is not necessarily a solution)
 - When the heuristic does not find a good solution, it is probably because it made a few poor choices \rightarrow *discrepancy* then makes a choice different than heuristically top-ranked
 - Hope to find a solution before Depth-First Search

Proposed method: CDDS (1)

- To combine 2 discrepancy-based methods
 - Climbing DS (neighborhood search)
 - Depth-bounded DS (neighborhood restricted at the top of the tree)
 - Climbing Depth-bounded Discrepancy Search (CDDS)
 - Optimization method: approximate solutions
 - Criterion = *makespan* minimization
 - A solution = UB

- LBs to fathom nodes in the search tree
 - Example: HFS

 $LB_{l}(i) = ct_{il} + \sum_{j=l+1}^{k} p_{ij} \quad (\text{where } ct_{il} \text{ is the completion time of } O_{il})$ $LB_{l}(i) = \begin{pmatrix} ACT[Sch^{(s)}(Y)] + \min_{i \in J-Y} \{\sum_{s=s+1}^{\tilde{n}} p_{i}^{(s)}\} & \text{if } ACT[Sch^{(s)}(Y)] > MCT[Sch^{(s)}(Y)] \\ MCT[Sch^{(s)}(Y)] + \min_{i \in Y} \{\sum_{s=s+1}^{L} p_{i}^{(s)}\} & \text{if } ACT[Sch^{(s)}(Y)] < MCT[Sch^{(s)}(Y)] \end{pmatrix}$ (7) $ACT[Sch^{(s)}(Y)] + \max\{\min_{i \in J-Y} \sum_{s=s+1}^{L} p_{i}^{(s)}, \min_{i \in Y} \sum_{s=s+1}^{L} p_{i}^{(s)}\} & \text{if } ACT[Sch^{(s)}(Y)] = MCT[Sch^{(s)}(Y)] = MCT[Sch^{(s)}(Y)] \end{pmatrix}$

Proposed method: CDDS (2)

- Exploration strategy
 - Instantiation heuristics
 - 1. Job selection: $X_i \in \{O_{11}, O_{12}, ..., O_{1s_1}, O_{21}, ..., O_{n1}, ..., O_{ns_n}\}$
 - 11. Earliest Start Time (EST)
 - 12. SPT or EDD or LDJ (job of longest duration)
 - 2. Machine selection (allocation): $A_i \in \{M_1, ..., M_m\}$ Earliest Completion Time (ECT)
 - Propagation = Forward-Checking over:
 - Start time of subsequent operations
 - Availability date of selected machine
 - Discrepancies
 - On job selection for HFS
 - On both types of variables (job and machine selection) for FJS

HFS: Example

FJS: Example of discrepancy on job selection variable

HFS: Experiments

Instances:

- Néron & Carlier
 - 52 easy problems
 - 24 hard problems

Comparison: – LDJ is the best rule – B&B of [Néron & Carlier, 2000] – AIS

Stop:

- limit on CPU time=30 sec.

Relative performance of methods

Method	easy	hard	all	
	% deviation / LB			
B&B	2.21	6.88	3.68	
DDS	1.42	8.01	3.58	
CDDS	1.1	5.0	2.32	
AIS	1.01	3.12	1.68	
CDDS^L	0.96	3.06	1.62	

% deviation = $\frac{C \max_best - LowerBound}{LowerBound} \times 100$

2 stage-HFS: Experiments

- Instances: .
 - Three sets generated in a similar way as [Lee & Vairaktarakis, 1994]
 - Set A: S₁[1 20]; S₂[1 40]
 - Set B: S₁[1-40]; S₂[1-20]
 - Set C: S₁[1 40]; S₂[1 40] n={10,20,30,40,50,100,150} : 1680 instances.
- Comparison:
 - LBs [Haouari et al., 2006]
 - TS and LBs [Haouari & M'Hallah, 1997]
- Stop:
 - limit on CPU time=15 sec.

<u>Relative performance of methods</u>

Method	Set A	Set B	Set C	
	%	deviation / LBs ₂	006	
CDDS⊦	0.82	0.33	0.34	
CDDS ²	0.17 0.13		0.22	
	% deviation / LBs ₁₉₉₇			
TS	0.63	0.97	0.86	
CDDS ²	0.16	0.12	0.26	

% deviation = $\frac{C \max_best - LowerBound}{100} \times 100$ LowerBound

19 y 20 de Febrero de 2009

2 stage-HFS: Experiments

- Instances:
 - Brandimarte's benchmarks
 - 10 problems
 - n=[10 20]; m=[4 15]; n_i=[5 15]

- **FJS: Experiments**
- Comparison:
 - EDD is the best rule
 - Brandimarte's LBs
 - TS of [Mastrolilli & Gambardella, 2000] (M.G.)
- Stop: limit on CPU time=30 sec.

instances	n	m	LB	<i>M.G.</i>	CDDS	%dev	CPU(M.G.)	CPU(CDDS)
Mk01	10	6	36	40	40	0.0	0.01	0.1
Mk02	10	6	24	26	26	0.0	0.73	0.2
Mk03	15	8	204	204*	204*	0.0	0.01	0.2
Mk04	15	8	48	60	60	0.0	0.08	0.03
Mk05	15	4	168	173	182	5.2	0.96	0.2
Mk06	10	15	33	58	60	3.4	3.26	0.1
Mk07	20	5	133	144	139	-3.5	8.91	0.3
Mk08	20	10	523	523*	523*	0.0	0.02	0.8
Mk09	20	10	299	307	307	0.0	0.15	0.4
Mk10	20	15	165	198	212	7.1	7.69	0.3
Average						1.2	2.18	0.26

SEMINARIO DE LOGÍSTICA INTEGRAL 19 y 20 de Febrero de 2009

FJS: Experiments

Instances: ٠ < Degree of flexibility Hurink's benchmarks 129 problems (43 JSP): EData **RData** Vdata n=[6 - 30]; m=[5 - 15] Comparison: EDD is the best rule [Pezella et al., 2007] Tabu + GA + LBs Stop:

limit on CPU time=30 sec.

Mean relative error / best_LB):

Problems	Tabu (%)	CDDS (%)	GA (%)
EData	2.2	5.3	6.0
RData	1.2	2.5	4.4
VData	0.1	0.6	2.0

% deviation = $\frac{C \max_best - LowerBound}{100} \times 100$ LowerBound SEMINARIO DE LOGÍSTICA INTEGRAL 19 y 20 de Febrero de 2009

FJS: Experiments

Deviation percentage over the	he b	est kn	own
lower bound			

Data set	num	alt	CDDS (%)
Brandimarte	10	2.59	17.0
Hurink Edata	43	1.15	5.3
Hurink Rdata	43	2	2.5
Hurink Vdata	43	4.31	0.6

num: number of instances; alt: machine's number per job

Parallel machine scheduling

 Comparisons on PmIr_i,q_iIC_{max} problems [Néron *et al.*, 2008] (50 hard instances; n = 100, m = 10, p_i = [1 - 10])
 Stop: limit on CPU time=30 sec.

$CPU_{limit} = 30 \ s$	Best Solution	Best Sol. Strict	CPU(s)
$LDS_{z=1}^{TW}$	1	0	29.64
$LDS_{z=2}^{CHR}$	7	0	28.40
$BS_{\omega=3}^{TW}$	25	3	20.37
$BS_{\omega=4}^{CHR}$	22	0	28.40
CDS	35	6	30 (8.03)
HD-CDDS	38	9	30 (7.02)

Conclusions

- Novel method to solve Flexible Shop Problems:
 - CDDS: Climbing Depth-bounded Discrepancy Search
 - Hybrid Flow Shop
 - → Excellent results [Ben Hmida et al., 2007; EJIE]
 - → 2-stages [Ben Hmida et al., 2009; JOS, under review]
 - Flexible Job Shop (results to confirm)
 - Parallel machine (with precedence constraints and setup times, L_{max} ; ΣC_{j})
 - → Excellent results [Gacias *et al.*, 2009; *COR, under review*]

- Even better results on FJS (adapted lower bounds?)
- Extension to Multimode Resource-Constrained Project Scheduling Problems (MRCPSPs)

II SEMINARIO DE LOGÍSTICA INTEGRAL 19 y 20 de Febrero de 2009

• Multicriteria FJS (ΣC_i ; $L_{max} - [Vilcot \& Billaut, 2007]$)

