PLNE pour le RCPSP : Une formulation basée sur les événements et comparaisons expérimentales

Koné Oumar (okone@laas.fr)

Laboratoire d'Analyse et d'Architecture des Systèmes, LAAS-CNRS.

Christian Artigues (artigues@laas.fr)

Laboratoire d'Analyse et d'Architecture des Systèmes, LAAS-CNRS.

Pierre Lopez (<u>lopez@laas.fr</u>)

Laboratoire d'Analyse et d'Architecture des Systèmes, LAAS-CNRS.

Marcel Mongeau (mongeau@math.univ-toulouse.fr)

Institut de Mathématiques, Université de Toulouse, UPS.

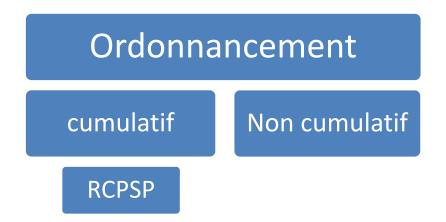
PLNE pour le RCPSP : Une formulation basée sur les événements et comparaisons expérimentales

PLAN DE LA PRESENTATION

- 1. Introduction Définition du RCPSP
- 2. Formulations PLNE du RCPSP
- 3. Formulation basée sur les événements
- 4. Tests
- 5. Résultats
- 6. Conclusion
- 7. Perspectives

RCPSP: « Resource-Constrained Project Scheduling Problem »

- Problème d'ordonnancement cumulatif
- Un des plus étudiés
- Grand nombre d'applications dans l'industrie.
- Couvre un grand nombre des problèmes théoriques d'ordonnancement.



Données

- n : Nombre de tâches;
- *T* : Ensemble *{1, ...,n}* de tâches;
- p_i : Durée de la tâche i;
- *E* : Ensemble de précédence : (i, j) ∈ E avec *i* et *j* ∈ *T* => la tâche *i* précède la tâche *j*;
- *K* : Nombre de ressources;
- *R* : Ensemble {1, ..., *K*} de ressources;
- R_k : Capacité de la ressource k, constante sur H;
- *H* : Horizon d'ordonnancement du projet;
- *r_{ik}* : Consommation de la tâche *i* sur la ressource *k*.

Objectif & Contraintes

- =>Minimiser la durée totale du projets (Cmax) sous :
 - Contraintes de précédences;
 - · Contraintes de ressources.

Formulation Conceptuelle

RCPSP: formulation

Variables de décision

 S_i : date de début d'exécution de la tâche i, avec $S_0 = 0$;

• minimiser C_{max} (1)

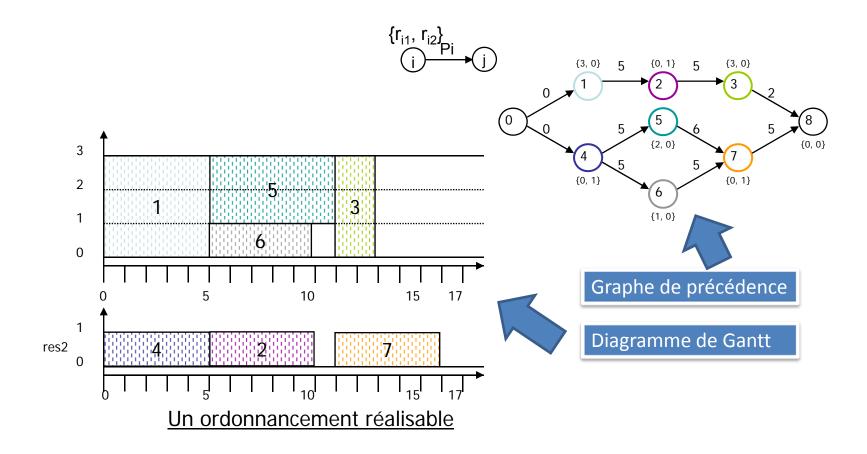
Sous

$$C_{max} \ge S_i + p_i$$
 $\forall i \in T$ (2)
 $S_j \ge S_i + p_i$ $\forall (i,j) \in E$ (3) (Contraintes de précédences)
 $\Sigma_{i \in P(t)} r_{ik} \le R_k$ $\forall t = 0,..., H-1 \ k \in R$ (4) (Contraintes cumulatives)
 $S_i \ge 0$ $\forall i \in T$ (5)

Avec
$$P(t) = \{i \mid S_i \le t < S_i + p_i\}$$

• Le RCPSP est NP- difficile au sens fort (P(t) difficilement identifiable)

Exemple de problème de RCPSP



Méthodes de résolution

- Calculs de bornes inférieures,
- Méthodes de résolution exacte,
- Méthodes de résolution approchée.

Techniques utilisées

- Programmation Linéaire en Nombres Entiers,
- Programmation Par Contraintes ,
- Branch and Bound,
- Relaxation Lagrangienne,
- Etc.

Pas de méthode exacte permettant de résoudre des problèmes de plus de 60 tâches

Formulation de Pritsker (1969)

x_{it} : variable binaire de décision

x_{it} = 1 si i démarre à t sinon 0

Remarque : Si = $\sum_{t} tx_{it}$

Nombre de variables binaires : n(H+1)

Nombre de contraintes : (H+1)(K+n) + Dim(E) + n

Formulation de Christofides (1987)

$$x_{it}$$
: variable binaire de décision x_{it} = 1 si i démarre à t sinon 0 Si \geq t => Sj \geq t + pi

$$\min \sum_{t} t x_{nt} \tag{6}$$

$$\sum_{\tau \ge t} x_{i\tau} + \sum_{\tau < t + p_i} x_{j\tau} \le 1 \quad \forall t \in H, \forall (i, j) \in E \quad (11)$$

$$\sum_{i} r_{ik} \sum_{\tau > t - p_i}^{t} x_{i\tau} \le R_k \qquad \forall t \in H, \forall k \in R$$
 (8)

$$\sum_{t} x_{it} = 1 \qquad \forall i \in T \tag{9}$$

$$\chi_{it} \in \{0;1\} \qquad \forall i \in T, \forall t \in H \qquad (10)$$

Nombre de variables binaires : n(H+1)

Nombre de contraintes : (H+1)(Dim(E) + K + n) + n

Formulation Basée sur les Flots (Flots) (Artigues et al. 2003)

 x_{ii} = 1 si l'activité *i* précède l'activité *j*, 0 sinon

 f_{ijk} : Nombre de ressource k libérées par i et envoyées à j au début de son exécution

Si: Date début de i

 f_{ijk} : variables de flots

Nombre de variables : n(n+nK+1)

Nombre de contraintes :

 $2Dim(E)+n (n^2 + 2 (nK + n + K+1))$

$$\min S_n \tag{12}$$

$$x_{ij} = 1 \qquad \forall (i, j) \in E \qquad (13)$$

$$x_{ij} + x_{ji} \le 1 \qquad \forall (i, j) \in T^2, i < j \qquad (14)$$

$$x_{ik} \ge x_{ij} + x_{jk} - 1 \qquad \forall (i, j, k) \in T^3$$
 (15)

$$S_j - S_i \ge -M + (p_i + M)x_{ij} \qquad \forall (i, j) \in T^2$$

$$\tag{16}$$

$$f_{ijk} \le \min(r_{ik}, r_{jk}) x_{ij} \qquad \forall (i, j) \in T^2, \forall k \in R$$
 (17)

$$\sum_{i \in T} f_{ijk} = r_{ik} \qquad \forall i \in T, \ \forall k \in R$$
 (18)

$$\sum_{i \in T} f_{ijk} = r_{jk} \qquad \forall j \in T, \ \forall k \in R$$
 (19)

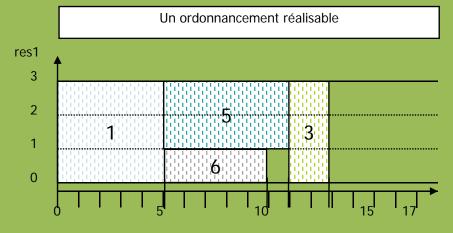
$$f_{ijk} \ge O$$
 $\forall (i,j) \in T^2, \ \forall k \in R.$ (20)

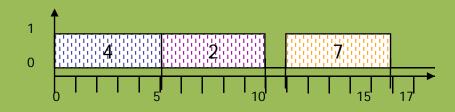
$$x_{ij} \in \{0,1\} \qquad \forall (i,j) \in T^2 \qquad (21)$$

$$S_i \ge 0, \ x_{ii} = 0 \qquad \forall i \in T$$
 (22)

Formulation Basée sur les Evénements (Events)

Formulation Basée sur les événements : 1 événement = début et/ou fin d'une tâche





T = 17

 $C_{\text{max}} = 16$

Nombre de tâches n = 7

Nombre d'événement s N= 6

Remarque : N <= n+1

Variables binaires

 $x_{ie} = 1 i débute à e$

 $y_{if} = 1 i finit à f$

Variables continues

t_e = date de l'événement e b_{ek} = consommation de la ressource k à l'événement e

Formulation Basée sur les événements (Events)

V : Ensemble des événements.

Variables binaires

 $x_{ie} = 1$ i débute à e $x_{if} = 1$ i finit à f

Variables continues

t_e = date de l'événement e b_{ek} = consommation de la ressource k à e

Nombre de variables binaires : N(2n+K+1)

Nombre de contraintes :

(n+1)(N-1)! + N(Dim(E) + 2K) + 2n

$$\begin{aligned}
&\min t_{n} \\
&t_{0} = 0 \\
&t_{f} \ge t_{e} + p_{i}x_{ie} - p_{i}(1 - y_{if}), \\
&t_{f} \ge t_{e}, \\
&t_$$

 $t_e \ge 0, b_{ek} \ge 0, x_{ie} \in \{0,1\}, y_{ie} \in \{0,1\}$

(33)

Tests

Instances

- Instances de la PSPLIB (J30) :
 - 30 tâches,
 - Horizon ≤130,
 - 4 ressources.
- Instances de Baptiste-Le pape (BL) :
 - 20 à 25 tâches,
 - Horizon \leq 40,
 - 3 ressources.
- Instances Flow-Shop Hybride (FH):
 - 50 à 150 tâches,
 - Horizon ≤ 250,
 - 5 à 10 ressources.
- Instances modifiées de la PSPLIB (J20M) :
 - Nombre de tâches réduit à 20,
 - Augmentation de la durée opératoire de 10 tâches choisies,
 - Horizon de temps \leq 2000,
 - 4 ressources.

Tests

Configuration logicielle et matérielle :

- Solveur de calcul : Ilog-Cplex,
- configuration de cplex : par defaut,
- Environnement de programmation : Ilog-Concert, C++ ,
- Limite de temps : TL = 500 secondes,
- Machine: PC Dell, XEON 5110 bi-processeur 1.6Ghz, 2GB RAM,
 Fedora.

Résultats

J30	S. Optimales		S. Réalisables		N.S.
	%	Temps	%	Ecart M.	%
Pritsker	81%	18 s	11%	6%	8%
Christofides	84%	14 s	11%	8%	5%
Events	8%	239 s	3%	2%	89%
Flots	63%	21 s	10%	2%	28%

BL	S. Optimales		S. Réalisables		N.S.
	%	Temps	%	Ecart M.	%
Pritsker	97%	12s	3%	3%	0%
Christofides	100%	37s	0%	0%	0%
Events	0%	0s	5%	11%	95%
Flots	3%	245s	13%	5%	84%

S. Optimales : Solutions optimales trouvées

S. Réalisables : Solutions réalisables trouvées

N.S.: Pas de solution

Temps: Temps moyen de résolution

Ecart M.: Ecart moyen par rapport à la meilleure solution connue

Résultats

FH	S. Optimales		S. Réalisables		N.S.
	%	Temps	%	Ecart M.	%
Pritsker	11%	70 s	16%	7%	72%
Christofides	50%	72 s	20%	9%	30%
Events	0%	0 s	0%	0%	100%
Flots	0%	0 s	0%	0%	100%

J20M	S. Optimales		S. Réalisables		N.S.
	%	Temps	%	Ecart M.	%
Pritsker	0%	0 s	0 %	0%	100%
Christofides	0%	0 s	0%	0%	100%
Events	65%	41 s	5%	9%	30%
Flots	83%	11 s	8%	6%	9%

S. Optimales : Solutions optimales trouvées

S. Réalisables : Solutions réalisables trouvées

N.S.: Pas de solution

Temps: Temps moyen de résolution

Ecart M.: Ecart moyen par rapport à la meilleure solution connue

Conclusions

Instances J30, BL, FH : (n ≥ 20; H << 1000)

- Formulation de **Christofides** présente la meilleure performance
- Formulation de **Pritsker** présente de très bonnes performances

Instances J20M : (n = 20; H > 1000, durées opératoires très disparates)

- La formulation basée sur les flots présente la meilleure performance
- La formulation basée sur événements présente de bonnes performances
 - Nombre de variables indépendant de l'horizon temps H
 - Nombre de contraintes indépendant de l'horizon temps H
 - ✓ Mémoire stable
 - √ Temps de résolution indépendant de l'horizon de temps H

Perspectives

- Renforcer le modèle basé sur les événements en ajoutant des coupes efficaces.
- Expliquer la faible performance du modèle basé sur les événements par raport au modèle basé sur les flots.
- Hybrider le modèle basé sur les événements avec les autres modèles existants.
- Utiliser le modèle de flots (ou le modèle à événement si on arrive à améliorer ses performances) pour résoudre des problèmes de RCPSP avec :
 - fonctions objectifs non standard,
 - horizon de temps élevé,
 - pour lesquelles il n'existe pas de méthode de résolution spécifique efficace.

