
Raisonnement diagnostic pour la maintenance et
l’autonomie de systèmes embarqués :

un bref état et quelques défis

Yannick Pencolé

Workshop Mocosy

27 mars 2009

A very brief overview of model-based diagnosis and
diagnosability: my starting point

Diagnosis principles

System

DiagnosisModel

Understand

Act

Know

(Norms,
expertises,

specification)
system

See
(Sensors)

(Repair,

Reconfigure,

Control,...)

Diagnosis: history

History
70’s: heuristic approaches (expert systems)

knowledge base = set of abductive rules (need expertise)
inference

80’s: model-based diagnosis (static systems)

90’s: model-based diagnosis (dynamic systems)

00’s: diagnosability checking

Present: design for diagnosability

Model-based diagnosis: the idea

Model-based diagnosis

Predicted
observations ObservationsDiscrepancies

Model System

Detection

Diagnosis

Identification Repair
Tests

Diagnosis: a basic introduction (static systems)

Definition
A system is a couple (SD,COMP):

COMP is a finite set of constants, one constant = one component
SD is a set of first-order logic sentences describing the
behavioural modes F of COMP of the system

Behavioural model (how a component works)
Structural model (how components interact)

Definition
A observed system is a system (SD,COMP) with some observations
OBS:

OBS is a set of atomic sentences.

Each atomic sentence represents an observation

Diagnosis: logical definition

Definition
A State of the system SD,COMP is a sentence Φ like:

Φ≡
∧

Mode(c, f)

A diagnosis candidate (hypothesis, accusation) of the system
SD,COMP is a state Φ such that:

SD∧OBScons ∧Φ |= OBSAbd is satisfiable.

The state Φ is possible according to SD,OBScons (consistency-based)
and logically explains the symptoms OBSAbd (root causes).

∆(SD,COMP,OBScons ∧OBSAbd) =
⋃

{Φ}

|∆| > 1 : ambiguous diagnosis

Towards dynamic systems

Taking into account the notion of time, of change
Fault are not supposed to be present at diagnosis time
Fault occurrence during the diagnostic process
Problem of diagnosis and monitoring

Use of other formalisms
Discrete-event systems

Model of the instantaneous changes of a system

On-line diagnosis

On-line acquisition of observations
Monitoring

Diagnostic updates (refinements) relying on a new set of
observations: incremental diagnosis

∆(SD,COMP,OBSt)→∆(SD,COMP,OBS′t), t
′ > t

Diagnosis computation performed on a temporal window

Efficiency requirements to “follow” the observation flow

More compatible with an embedded system requirements

DES framework

Model of a component: an automaton Γi

Model of the system Γ = {Γ1,Γ2, . . . ,Γn}
Model of a subsystem γ ⊆ Γ, γ &= /0

Model of a component: Γi = (Qi ,Σi ,Ti ,q0i)

Qi finite set of states

Σi , set of events (local,communication)
occurring on Γi

Ti ⊆ Qi ×Σi ×Qi , set of transitions

q0i , initial state

Σoi ⊂ Σi (observable), Σi ⊆ Σi (fault)
Mode(Γi , f)≡ “The event f has occurred on Γi ”

Classical diagnoser on a controller+pump+valve system

1 {}start 4 {},5 {so},6 {sc} 9 {sc}

7 {},8 {so}

10 {},11 {so}1 {},2 {so}

12 {sc}

3 {sc}

6 {sc}

ov- -

sp++

+-

sp+-

sp- -

cv- -

ov- -

sp- -

cv- -
ov- -

sp+ -

State 7{},8{so}≡Mode(controller ,normal)∧
Mode(pump,normal)∧ (Mode(valve,normal)∨Mode(valve,so))

Diagnosability in a DES

In pratice, given a flow of observations OBS at time t ,
two cases hold:

1 |∆(SD,OBS)| = 1: non-ambuiguity
2 |∆(SD,OBS)| > 1: ambiguity

Definition
Event F is diagnosable if it is always possible to diagnose its
occurrence with certainty after a finite number of observations that
follow the occurrence of F .

In other words, F is diagnosable:
1 It is always possible to decide about the occurrence of F
2 This decision is done after waiting for a finite set of observations

Diagnosis for maintenance and autonomy in
embedded systems: my objectives

Notion of embedded system

Definition
An embedded system is an engineering artifact involving computation
that is subject to physical constraints. The physical constraints arise
through the two ways that computational processes interact with the
physical world:

1 reaction to a physical environment
2 execution on a physical platform.

T.A. Henzinger and J. Sifakis. The Discipline of Embedded Systems
Design, Computer, October 2007, pp. 32-40.

Characteristics of embedded systems

Dynamic systems

Component-based systems (compositional design)

Reasoning capabilites but limited computational ressources

Heterogenous components (electronic, hydraulic, mechanic,...)

Action capabilities

Embedded systems from my project involvements

!"#$%&'()

*+,-./'&

0./1$"2$/ 03%2%

4'"%/-

#$%3('"$"5$(5-&6-))-)5"7"2-&"8

!1759

:';59

Objectives

Improving the maintenance of commercial embedded systems
(aircrafts, cars, “robots”)

Repair what is broken in the system.

Improving the autonomy of embedded systems (robots, satellites)

Act in order to achieve the goals whatever the difficulties are.

Objectives:
How can diagnostic reasoning improve:

maintenance?

autonomy?

Diagnosis and Maintenance

Maintenance of an embedded system: aircraft (ARCHISTIC)

!"#$%&'

("&)#)*+
,$'&-

./0'&1"-#2)0

!"#$!%&'!"#$!%&'

3%04'5-'6
72842)')-0

!"#"$# !"#"$#

!%&'()*"

+"*#

!%&'()*"

+"*#

!%&'()*"

9"%$-:
72842)')-0

,"-&%. ;'4$"5'6
72842)')-0

/0-1&%(232,"4)5"

<2=("&)#)*+
<2=,$'&-+
;'"6:=>.=?.

@,<AB<?

Maintenance of an embedded system: aircraft (ARCHISTIC)

!"#$%&'

("&)#)*+
,$'&-

./0'&1"-#2)0

!"#$!%&'!"#$!%&'

3%04'5-'6
72842)')-0

!"#"$# !"#"$#

!%&'()*"

+"*#

!%&'()*"

+"*#

!%&'()*"

9"%$-:
72842)')-0

,"-&%. ;'4$"5'6
72842)')-0

/0-1&%(232,"4)5"

<2=("&)#)*+
<2=,$'&-+
;'"6:=>.=?.

@,<AB<?

(!!#)!"*

Maintenance of an embedded system: aircraft (ARCHISTIC)

!"#$%&'

("&)#)*+
,$'&-

./0'&1"-#2)0

!"#$!%&'!"#$!%&'

!"#"$# !"#"$#

!%&'()*"

3"%$-4
52672)')-0

+",&%- 8'7$"9':
52672)')-0

./,0&%(121+"3)4"

;2<("&)#)*+
;2<,$'&-+
8'":4<=.<>.

?,;@A;>

Ideal maintenance process implies Diagnosability

!"#$%&'

("&)#)*+
,$'&-

./0'&1"-#2)0

!"#$!%&'!"#$!%&'

!"#"$# !"#"$#

!%&'()*"

3"%$-4
52672)')-0

+",&%- 8'7$"9':
52672)')-0

./,0&%(121+"3)4"

;2<("&)#)*+
;2<,$'&-+
8'":4<=.<>.

?,;@A;>

@#"*)20"/$'<2)B$#)'<040-'6

Maintenance: contributions and challenges

Design of a diagnosis architecture that takes into account the
component-based nature of the system

Set of communicating diagnoser agents
Determining for each agent, what are the components that are
sufficient to monitor

Notion of accurate diagnosers to minimize the implementation
complexity

Local diagnosability improves diagnosis complexity
Design recommendation for sensor placement to improve
diagnosability

Coupling diagnosis and prognosis to improve predictive
maintenance

The less ambiguous the diagnosis is, the more precise the
prognosis is
Towards a unique characterisation of the diagnosis/prognosis
process.

Diagnosis and Autonomy

Autonomy of an embedded system

act

Resources "Reasoner"
uses

Missions/Goals

guarantees

 act

System

Environment

Benefiting of action capabilities

Acting on its environment
moving around, taking objects, communicating

Acting on itself
reconfiguring itself

Decision making
given the current heath state, given the current environmental
state, how to perform and achieve the mission?

Active diagnosis: a way to improve autonomy

Active diagnosis: performing actions to prune diagnostic
candidates at a given time
Two diagnostic candidates may not correspond to one unique
action mode

Due to the ambiguity, it may be impossible to reach the mission
goal with the precomputed plan.
Active diagnosis session: planning for ambiguity pruning

Challenges:
taking into account the action capabilities at design time to
analyse diagnosability
notion of active diagnosability
design recommendation for active diagnosability

Towards self-healing systems

Given the observability of the system (internal sensors)

Given the repair capabilities (reconfigurations, equipement
redundancies,...)
Formal analysis to determine whether the system can heal itself

Self-healability: formal property
Capability to observe itself, diagnose and repair faults
Extended version of the classical diagnosability property

Embedded systems: algorithmic issues

Spectrum algorithms based on precompiled models

Component
Models

component
synchronisation

Global
Model

compilation of
unobservable events Model

Abstracted compilation of
diagnosis information

Diagnoser
Model

z1c1 c2

o4 o5z2 z3

Γ3

x1

x5

x6x7

x4

x2
x3

o1

f1

o1

o2

c1c1

c1

c1

c1

Γ1
y1

y2

f2

y3

c2

o3

y4

c1

y6

o3

y5

o3

c1

Γ2

Comp

f1
Comp Comp

f2

o1

s

ss
x1

x2
s1

x3f1

x4
f2

f2

x5

f1
s1

f2
f1

x6o1

x1 x5
{f1}

{f1, f2} x6o1
x1 {} x6 {f1}

x6 {f1,f2}
o1

Let n the number of components, let F the number of faults.
Complexity: 22n×F

Tradeoff between temporal and space complexity

Symbolic Finite State Machine based on BDDs

FSM encoding into logical formulas to empirically decrease the
complexity (cache)

A state x ∈ X is encoded with a set of +log2(|X |), boolean variables:

x0 = ¬bX
2 ∧¬bX

1 ,x1 = ¬bX
2 ∧bX

1 , . . . ,x3 = bX
2 ∧bX

1

An event of Σ is encoded with a set of +log2(|Σ|), boolean variables

o1 = ¬bO
2 ∧bO

1 ...

A transition xsrc
t−→ xtrg is encoded with 2 sets of +log2(|X |), boolean

variables for the source and target states, and a set of +log2(|Σ|),
boolean variables for the event:

x1
o1−→ x2 ≡ ¬bX

2 ∧bX
1 ∧¬bO

2 ∧bO
1 ∧bX ′

2 ∧¬bX ′
1

Spectrum: Symbolic vs Enumerative

100 random scenarios containing 10000 observations each

Spectrum: behaviour of the symbolic spectrum

100 random scenarios containing 10000 observations each

Scalability of the component-based algorithm

100 random scenarios containing 10000 observations each

Taking care of the concurrency by using of Petri Nets

Taking benefit of the compactness of Petri Nets to generate a
diagnoser

Challenge: generation of a diagnoser exponentionnally smaller
than its corresponding marking graph

Integrating symbolic time to increase expressivity (Time Petri net
and chronicles)

Taking benefit of symbolic techniques to generate marking graph
efficiently (as in Tina, Romeo)

Conclusions and perspectives

The key point is to design the diagnostic process at the same
time than the design of the system itself

Modular diagnostic process (component-based software)
Formal analysis of the diagnostic objective (maintenance,
autonomy, self-healing...)
Formal analysis of diagnosability, diagnoser accuracy, diagnosis
complexity.
Optimizing the tradeoff between the diagnostic objective and the
available computational ressources
Better being correct and ambiguous than incorrect

Model-based diagnosis: relying on a complete and correct
knowledge: white-box

We need to remove this hypothesis: grey box
Knowledge discovery, evolutive models, machine learning
How to deal with “unknown unknowns”?

