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Séminaire MOCOSY, 27 March 2009



Research Domain

• Scheduling Theory

• Queueing Theory

• Stochastic optimal control

• Game Theory

• and their application to the performance evaluation,

conception and dimensioning of communication networks

and distributed systems.



Outline of the talk

• Introduction to Stochastic Processes

• Three examples of on-going research



Stochastic Process

• A stochastic process (N(t))t≥0 is a sequence of random

variables indexed by t.

• Randomly evolving dynamical system

• Characterization by first order statistics

– distribution P(N(t) ≤ y) as a function of t

– mean E[N(t)] and variance E[N(t)2]

– Simulation, Analysis, Comparison, Optimization,

Control...?



Transient vs. Steady-State

Let N = limt→∞ N(t) denote number of customers in steady-state.

Simplest random-walk: N → N + 1 at rate λ and

N → N − 1 at rate µ. Then P(N = n) = (λ/µ)n(1 − λ/µ).



Analysis of Steady-State

• Let πj = limt→∞ P(N(t) = j) denote the steady-state probability

• The number of times the process departs from state j is equal

to the number of times the process arrives to this state.

• In equilibrium it holds πj =
∑

i πipij

• Questions: Existence, uniqueness, closed-form, numerical

resolution



Little’s law: Relation between mean number of jobs
and Mean response time

∫ t
0 N(s)ds = T1 + T2
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∫ t
0 N(s)ds = T1 + T2

In general we have

1

t

∫ t

0
N(s)ds ≈

1

t

A(t)
∑

i=1

Ti

and thus Little’s Law states: E[N ] = λE[T ]



Jackson, BCMP and Kelly networks



Jackson, BCMP and Kelly networks

P(N1 = n1, N2 = n2, . . . , NK = nK) = ΠK
i=1P(Ni = ni)

where P(Ni = ni) = (λ/µ)ni(1 − λ/µ).

In steady-state the queues behave as if they were isolated

and independent from each other.



Limiting regimes and Comparisons

• Heavy-Traffic, when the system is in saturation [VAN09]

lim
λ→µ

(µ − λ)P(N1 = n1, N2 = n2, . . . , NK = nK)
d
= X · (ρ1, ρ2, . . . , ρK)
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N(∆t)
∆ = n(t) where n(t) is the solution of an

ordinary differential equation. For the previous example dn(t)
dt

= λ− µ .

Performance Evaluation and Optimal Control [APZ08]
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• Sample-path Comparison [VAB09]

If %W π(0) = %W π̃(0), then

i) Nπ
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0 (t) and W π
0 (t) ≥ W π̃

0 (t),

ii) W π
0 (t) + W π

i (t) ≥ W π̃
0 (t) + W π̃

i (t)
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• Sample-path Comparison [VAB09]

If %W π(0) = %W π̃(0), then

i) Nπ
0 (t) ≥ N π̃

0 (t) and W π
0 (t) ≥ W π̃

0 (t),

ii) W π
0 (t) + W π

i (t) ≥ W π̃
0 (t) + W π̃

i (t)

• Mean Field Limit, Large deviations and Differential Traffic

Theory



Heavy-Traffic: State space collapse
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Three examples

• Size-based Scheduling

• Conservation Law in queues

• Server Farms



Fair Policy: Processor Sharing Policy

• Processor-Sharing (PS): All present jobs in the system get a

fair share of service. If there are N jobs, each job gets served at

rate 1/N .

• An acceptable model for (i) data networks at high load (ii) web

servers and (iii) CPU

• Well-studied [Kleinrock, Yashkov, Cohen, Kelly, Boxma, Robert]



Example 1: Size-based scheduling

• Experimental evidence: Mice and Elephants traffic

pattern, 80% of the connections are short, 5% of largest

flows make up for 95% of the load

• Preferential treatment to short connections?

• Evaluate the performance consequences:

– To what extent is the performance of large connections

degraded?

– What happens to the average number of connections?

What are the consequence?



2PS(a)

Jobs are classified into two groups depending on the amount of

service they have received.

• High Priority: Jobs that have obtained less units of

service than a.

• Low Priority: Jobs that have obtained more units of

service than a. Within one priority level, jobs are served

according to PS.



Asymptotic throughput of 2PS(a)

Theorem [AAB06]: The throughput obtained by large jobs is

the same under both systems

lim
x→∞

x

E[T 2PS |X = x]
=

x

E[TPS |X = x]



Comparison between 2PS(a) and PS

Theorem [AA05]: If the hazard rate of the distribution function

is decreasing:

E[N2PS ] ≤ E[NPS ]



Example 2: Conservation Law for single server queues



Example 2: Conservation Law for single server queues

Let W (t) denote the total work in the system at time t. The

evolution of W (t) is independent of the scheduling policy.



Conservation Law for single server queues

Theorem [A07]: In a single server queue with M classes with arbitrary

scheduling discipline π:

M
∑

j=1

λj

∫ ∞

0
E[T π

j |Xj = x]P(Xj > x)dx = E[W ]

• Application to comparison of policies E[T π1 ] ≤ E[T π2 ] [A07]

• Characterization of large sojourn times limx→∞ E[T π
j |Xj = x]

[AAB08]



Example 3: Server farms

• Diverse applications : e-service industry, database systems,

grid computing clusters

Servers

Dispatcher

Requests

Design problem: What is the optimal routing policy?

• Centralized setting: dispatcher takes decisions

• Decentralized setting: requests take decisions



Decentralized setting: Wardrop equilibrium

Total flow from S to N is 6

Wardrop equilibrium: 3 units

travel via W , and 3 via E

Total Delay: (10×3)+(3+50) = 83



Comparing the Global and Individual: Braess’
Paradox

A new link is added:



Comparing the Global and Individual: Braess’
Paradox

A new link is added:

There are 3 possible routes

with the same delay:

(10 × 4) + (2 + 50) = 92

(10×4)+(2+10)+(10×4) = 92

Adding a new link in-

creases everyone’s delay!



Example application

Internet based source code repositories - SourceForge, Google Code:

Source files are hosted on several mirror sites

• Decision is taken either by the central unit or by the downloader

• Downloads progress in parallel ⇒ Processor Sharing (PS) at each

server



Centralized setting

• Solve the following mathematical program :

minimize
∑

j∈S

cjE[N(p)]

subject to
∑

j∈S

pij = 1, for all i ∈ K;

p ) 0;



Decentralized setting

Equilibrium: A strategy p is an equilibrium if for each

class i = 1, ...,K and each queue k used by class i,

E[ckTk(p)|i] = min
j=1,...,K

E[cjTj(p)|i]



Decentralized setting

Equilibrium: A strategy p is an equilibrium if for each

class i = 1, ...,K and each queue k used by class i,

E[ckTk(p)|i] = min
j=1,...,K

E[cjTj(p)|i]

Potential Games. The distributed non-cooperative game can

be transformed into the standard convex optimization problem

min
p

C
∑

k=1

ck log

(

1

1 − ρk(p)

)

subject to 0 < ρj < 1,
∑

j

rjρj = η.

⇒ The game belongs to a particular type of games known as

“Potential Game” [Shapley et al. 1996]



Comparing the Global and Individual

Price of Anarchy: [Papadimitriou 98] Defined as the ratio

between the performance (mean delay) obtained by the

Wardrop equilibrium and the global optimal solution.

⇒ A measure for the inefficiency of the decentralized scheme.

PoA = sup
"λ,"c,"r

(

Perfomance Decentralized Setting

Global optimum

)

; PoA ∈ [1,∞)



Comparing the Global and Individual
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Perfomance Decentralized Setting

Global optimum

)

; PoA ∈ [1,∞)

Theorem [AAP08]. For every θ, there exist cj and rj , j ∈ S, such

that PoA > θ.

⇒ The PoA is unbounded.

If ck = 1, then PoA ≤ C [Haviv and Roughgarden, 2007].



Comparing the Global and Individual

PoA = sup
"λ,"c,"r

(

Perfomance Decentralized Setting

Global optimum

)

; PoA ∈ [1,∞)

Theorem [AAP08]. For every θ, there exist cj and rj , j ∈ S, such

that PoA > θ.

⇒ The PoA is unbounded.

If ck = 1, then PoA ≤ C [Haviv and Roughgarden, 2007].

Theorem [ABP09]. If there are K selfish users, then PoA =
√

K



Missing result...

Max"λ:
∑

k λk=Λ

∑K
i=1 Di(p∗

1(%λ), . . . ,p∗
K(%λ))

where p∗
1, . . . ,p∗

K is s.t.

Di(p
∗
1, . . . ,p∗

K) = min
pi:

∑L
j=1

pij=λi

Di(p
∗
1, . . . ,p∗

i−1,pi,p
∗
i+1, . . . ,p∗

K)

Conjecture: The solution is %λ = (Λ/K, . . . , Λ,K)?



Conclusions and Future work

• Interaction between Game Theory and Queueing

• Wireless Systems. Capacity Changes over time.

– Need for new mathematical model and paradigms

• Wired Networks. Internet will be everywhere. Elastic

(web, email, ...) and Streaming (VoIP, video-on-demand)

applications with very different QoS requirements

– Need for new mathematical models for the design and

performance evaluation of such networks.

• Power might be the key performance criteria!

• Peer-to-Peer Networks, AdHoc Networks


