Contrôleurs à réinitialisation - un aperçu

Thomas Loquen Christophe Prieur Sophie Tarbouriech

LAAS-CNRS Toulouse

Outline

Les systèmes hybrides

Généralités Bibliographie

Modélisation

Modèlisation hybride

Analyse en stabilité et performance

Approche choisie

Conditions de stabilité et perfomance sans saturation

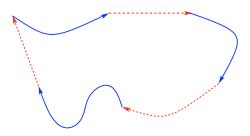
Conditions de stabilité avec saturation

Simulations

Conclusion

Systèmes hybrides

Classe de systèmes dynamiques associant des comportements de type temps continu et temps discret : succession de trajectoires continues (ou flux) et discrètes (ou saut).



Motivations

L'intéraction entre équations continues et discrètes du mouvement peut permettre de dépasser les limites du continu :

- Enrichissement des modèles description des phénomènes : circuits électriques, systèmes biologiques, systèmes mécaniques ...
- ▶ Plus grande flexibilité pour la commande : contrôleur continue avec variables discrètes (passage d'un mode à un autre, réinitialisation de composant , ...) pour améliorer la convergence ou les performances du système bouclé.

Les systèmes à réinitialisation : une classe de systèmes hybrides [Goebel et al., 2004]

La modélisation, et les solutions, d'un système hybride doit rendre compte des dynamiques continue et discrète :

$$\dot{x}(t,j) = f(x(t,j)) \text{ si } x(t,j) \in \mathcal{F} \text{ et } t \in [t_j,t_{j+1}] \\ x(t_{j+1},j+1) = g(x(t_{j+1},j)) \text{ si } x(t_{j+1},j) \in \mathcal{J}, \ j \in \mathbb{N}^+.$$

Solutions définies sur un domaine de temps hybride :

$$\bigcup_{j} [t_j, t_{j+1}] \times \{j\}$$

[Clegg, 1958] Premier contrôleur à réinitialisation : l'intégrateur de Clegg réduit la marge de phase de l'intégrateur linéaire.

[Horowitz et al., 1975] First Order Reset Element (FORE).

[Beker et al.,01] [Hollot et al.,01] Analyse de système en boucle fermée incluant un intégrateur de Clegg ou un FORE.

[Zaccarian et al.,05] [Nešic and al.,08] Caractérisation des avantages des contrôleurs à réinitialisation.

[Loquen et al., 07] Analyse en stabilité et performance de systèmes à réinitialisation en présence de saturation.

[Baños et al., 09] Stabilité des systèmes à réinitialisation avec retard.

[Bakkeheim et al., 08] Réinitialisation dépendante d'une fonction de Lyapunov.

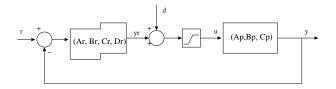
► Système à commander

$$\dot{x}_p = A_p x_p + B_p sat(u) + B_{pd} d,$$

 $y = C_p x_p.$

► Contrôleur à réinitialisation

$$\dot{x}_r = A_c x_r + B_c e$$
, si $e y_r \ge 0$
 $x_r^+ = A_r x_r + B_r e$, si $e y_r \le 0$
 $y_r = C_c x_r + D_c e$.



Modélisation du système bouclé :

$$\dot{x} = A_f x + B\Psi(Kx) + B_r r + B_d d \text{ si } x \in \mathcal{F},$$

 $x^+ = A_j x \text{ si } x \in \mathcal{J},$
 $y = Cx.$

La nonlinéarité $\Psi(Kx)$ est définie comme :

$$\psi(\mathsf{K}\mathsf{x}) = \mathsf{sat}(\mathsf{K}\mathsf{x}) - \mathsf{K}\mathsf{x}.$$

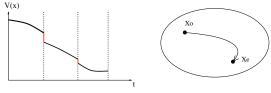
- Les états du système à commander ne sont pas concernés par le saut.
- ▶ Les sous espaces de flux et de saut, F et J s'écrivent respectivement :

$$\mathcal{F} := \{ x \in \mathbb{R}^n ; x'Q'MQx \ge 0 \} \quad \text{avec } M = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$$

$$\mathcal{J} := \{ x \in \mathbb{R}^n ; x'Q'MQx \le 0 \} \quad \text{et } Q = \begin{bmatrix} C_p & 0 \\ D_rC_p & C_r \end{bmatrix}$$

Quelques rappels sur les concepts mathématiques utilisés :

➤ Théorie de Lyapunov : le système converge vers un état d'équilibre s'il existe une fonction de Lyapunov candidate décroissante sur les parties continues et sur les sauts.



▶ Stabilité \mathcal{L}_2 : un système est \mathcal{L}_2 stable, s'il existe γ un gain fini tel que :

$$\frac{||y||_2}{||d||_2} \le \gamma$$

où la norme \mathcal{L}_2 d'un signal u est $||u||_2^2 = \int_0^\infty u(t)' u(t) dt$. Ce gain est aussi un critère de performances.

Approche choisie

Conditions constructives

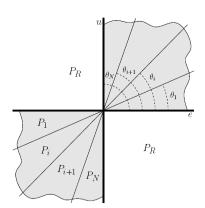
Utilisation d'Inégalite Matricielle Linaire (LMI) le problème mis sous forme de LMI se résout facilement l'aide d'outils numériques.

- calcul de la fonction de Lyapunov
- estimation du gain \mathcal{L}_2
- dans le cas d'une entrée saturée, estimation du domaine de stabilité du système hybride

Pour les sytèmes à rénitialisation, il peut être intéressant d'utiliser des fonctions de Lyapunov quadratiques par morceaux

$$V_i(x) = x'P_ix, P_i = P'_i > 0, i = 0, ..., N.$$

Fonctions de Lyapunov quadratiques par morceaux



Pour lever une partie du conservatisme lié aux fonctions quadratiques :

- ▶ Division en secteurs de l'espace d'état $\Pi_i = \{x \in \mathbb{R}^n; x'S_ix \geq 0\}$ à partir des angles θ_i .
- ▶ Une fonction de Lyapunov par secteur $V_i(x) = x'P_ix$.

Cette approche permet de considérer des contrôleurs instables sans reset.

Analyse de stabilité et perfomance sans saturation

Nous devons vérifier que

- $\dot{V}(x,d) + \frac{1}{2}y'y \gamma d'd < 0, \ \forall x \in \Pi_i, \ i = 1, \dots, N$
- $\triangle V(x) \leq 0, \forall x \in \Pi_0$
- Continuité des fonctions de Lyapunov à l'intersection des secteurs

Theorème

- $L_i(P_i, A_f, C, B_r, B_d, \gamma, S_i) < 0, i = 1, ..., N$
- ► $L_0(P_0, A_j, S_0) \leq 0$
- $\mathbb{L}_0(P_0, P_1, \theta_0) = 0, \mathbb{L}_1(P_0, P_N, \theta_N) = 0$ $\mathbb{L}_i(P_i, P_{i+1}\theta_i) = 0, i = 1, \dots, N-1$

Alors

- 1. si d = 0, le système hybride est asymptotiquement stable
- 2. si $d \neq 0$ et $x_0 = 0$, le gain \mathcal{L}_2 entre d et y est fini et inférieur

Analyse de stabilité avec saturation

Pour les systèmes saturés, la stabilité est liée au chois de la condition initiale : estimation d'un domaine de stabilité local positivement invariant.

Soit une matrice $G \in \mathbb{R}^{1 \times n}$ définissant l'espace suivant :

$$\Gamma = \{x \in \mathbb{R}^n; -u_0 \leq (K-G)x \leq u_0\}.$$

Il y a stabilité si :

- ▶ Pour les trajectoires continues, les fonctions de Lyapunov satisfont $\dot{V}_i(x) \leq 0 \ \forall x \in \Gamma$.
- L' estimation du domaine de stabilité associés $\mathcal{E}(P_i) = \{x \in \mathbb{R}^n; x'Px \leq 1\}$ est inclue dans l'espace Γ.
- ▶ La fonction de Lyapunov est non-croissante au cours des sauts.
- les conditions de continuités sont satisfaites.

Theorème

- ► $L_i(P_i, A_f, C, B, GT, S_i) < 0, i = 1,..., N$
- ► $L_0(P_0, A_j, S_0) \leq 0$
- ▶ $\mathbb{L}_0(P_0, P_1, \theta_0) = 0$, $\mathbb{L}_1(P_0, P_N, \theta_N) = 0$ $\mathbb{L}_i(P_i, P_{i+1}\theta_i) = 0$, i = 1, ..., N-1

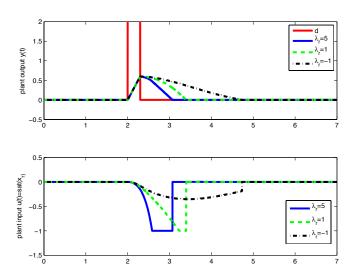
Alors $\bigcup_{i=0,\dots,N} \{x \in \mathbb{R}^n; x'P_ix \leq 1 \text{ if } x \in \Pi_i\}$ est une région de stabilité.

On s'intéresse l'analyse d'un système instable du premier ordre contrôlé par un FORE.

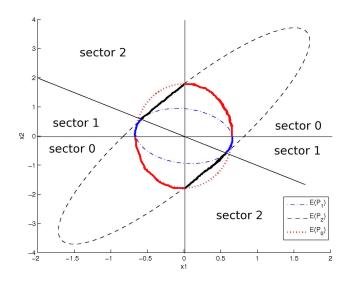
Application de notre théorème sur cette boucle de commande :

- Estimation du domaine de stabilité.
- Illustration avec une simulation dynamique.

Simulation temporelle



Domaine de stabilité



Conclusion

Les systèmes avec réinitialisation sont une classe de systèmes hybrides qui, utilisés dans le cadre de la commande, peuvent permettre :

- d'améliorer les performances vis-à-vis d'un contrôleur linéaire y compris en présence de saturation.
- d'agrandir la région de stabilité d'un système soumis à des saturations.

Pour la suite de nos travaux :

- continuer à proposer de nouvelles conditions de reset
- passer à la synthèse de contrôleur à réinitialisation.