Multi-objective branch-and-cut algorithm and multi-modal traveling salesman problem

Nicolas Jozefowiez¹, Gilbert Laporte², Frédéric Semet³

1. LAAS-CNRS, INSA, Université de Toulouse, Toulouse, France, nicolas.jozefowiez@laas.fr

2. CIRRELT, HEC, Montréal, Canada, gilbert@crt.umontreal.ca

3. LAGIS, Ecole Centrale de Lille, Villeneuve d'Ascq, France, frederic.semet@ec-lille.fr

OUTLINES

Branch-and-cut algorithm

Multi-objective optimization

A multi-objective branch-and-cut algorithm

The multi-modal traveling salesman problem

BRANCH-AND-CUT ALGORITHM

A method to solve integer programs:

$$\begin{array}{ll} \min & cx\\ Ax &\geq b\\ x &\geq 0 \mbox{ and integer} \end{array}$$

Branch-and-bound algorithm

Cutting plane method

Explicit enumeration

Build an exploration tree \rightarrow at each node, branching on a variable Keep the best found feasible solution (the upper bound ub)

Implicit enumeration

At each node, a lower bound *lb* is computed

A node can be pruned if given the branching choice:

- 1. the problem is infeasible (pruned by infeasiblity)
- 2. the solution is feasible (pruned by optimality)
- 3. $lb \ge ub$ (pruned by bound)

 $\begin{array}{rll} \min & -1.00x_1 - 0.64x_2 \\ 50x_1 + 31x_2 &\leq 250 \\ 3x_1 - 2x_2 &\geq -4 \end{array}$

 $x_1, x_2 \ge 0$ and integer

 $\begin{array}{rll} \min & -1.00x_1 - 0.64x_2 \\ 50x_1 + 31x_2 &\leq 250 \\ 3x_1 - 2x_2 &\geq -4 \end{array}$

 $x_1, x_2 \ge 0$ and integer

 $\begin{array}{rll} \min & -1.00x_1 - 0.64x_2 \\ 50x_1 + 31x_2 &\leq 250 \\ 3x_1 - 2x_2 &\geq -4 \\ x_2 &\leq 4 \end{array}$

 $x_1, x_2 \geq 0$ and integer

 $\begin{array}{rll} \min & -1.00x_1 - 0.64x_2 \\ 50x_1 + 31x_2 &\leq 250 \\ 3x_1 - 2x_2 &\geq -4 \\ x_2 &\leq 4 \end{array}$

 $x_1, x_2 \geq 0$ and integer

 $\begin{array}{rll} \min & -1.00x_1 - 0.64x_2 \\ 50x_1 + 31x_2 &\leq 250 \\ 3x_1 - 2x_2 &\geq -4 \\ & x_2 &\leq 4 \\ 3x_1 + 2x_2 &\leq 15 \\ & x_1, x_2 &\geq 0 \text{ and integer} \end{array}$

 $\begin{array}{rll} \min & -1.00x_1 - 0.64x_2 \\ 50x_1 + 31x_2 &\leq 250 \\ 3x_1 - 2x_2 &\geq -4 \\ & x_2 &\leq 4 \\ 3x_1 + 2x_2 &\leq 15 \\ & x_1, x_2 &\geq 0 \text{ and integer} \end{array}$

A simple branch-and-cut algorithm

STEP 1 (Root of the tree)

Generate an initial upper bound ubDefine a first sub-problem Insert the sub-problem in a list L

STEP 2 (Stopping criterion)

If $L = \emptyset$ then STOP, else choose a sub-problem from L and remove it from L

STEP 3 (Sub-problem solution)

Solve the sub-problem to obtain the lower bound lb

STEP 4 (Constraint generation)

if there is no solution or lb ≥ ub then Go to STEP 2.
else if the solution is integer then ub ← lb and go to STEP 2.
else if violated constraints are identified then Add them to the model and go to STEP 3.

Go to STEP 5.

end if

STEP 5 (Branching)

Branch on variable and introduce new sub-problems in L. Go to STEP 2.

MULTI-OBJECTIVE OPTIMIZATION PROBLEM

$$(PMO) = \begin{cases} \min F(x) = (f_1(x), f_2(x), \dots, f_n(x)) \\ s.t. \ x \in \Omega \end{cases}$$

with:

- ▶ $n \ge 2$: number of objectives
- $F = (f_1, f_2, \dots, f_n)$: vector of functions to optimize
- $\Omega \subseteq \mathbb{R}^m$: set of feasible solutions
- $x = (x_1, x_2, \dots, x_m) \in \Omega$: a feasible solution
- $\mathcal{Y} = F(\Omega)$: objective space
- ▶ $y = (y_1, y_2, ..., y_n) \in \mathcal{Y}$ avec $y_i = f_i(x)$: a point in the objective space

PARETO DOMINANCE RELATION

A solution x dominates (\preceq) a solution y if and only if $\forall i \in \{1, \ldots, n\}, f_i(x) \leq f_i(y)$ and $\exists i \in \{1, \ldots, n\}$ such that $f_i(x) < f_i(y)$.

EXACT ALGORITHMS FOR MOP

	n = 2	$n \ge 2$
Iteration	Two-Phase method	K-PPM
	PPM	
Multi-objective		[Sourd, Spanjaard, 2008] (*)
method		

(*) does not work if the aggregated problem is NP-hard

 \Rightarrow a multi-objective branch-and-cut algorithm for multi-objective integer programs

Lower bound \Leftrightarrow multi-objective linear program

Possibility to use scalar techniques to solve it to optimality (or a subset that can be extended)

Adaptations to a multi-objective problem

Upper bound = set of non-dominated solutions found during the search

Lower bound = set of non-dominated points in the objective space such that all feasible solutions are dominated by these points

A MULTI-OBJECTIVE BRANCH-AND-CUT ALGORITHM

STEP 1 (Root of the tree)

Generate an initial upper bound ubDefine a first sub-problem Insert the sub-problem in a list L

STEP 2 (Stopping criterion)

If $L = \emptyset$ then STOP, else choose a sub-problem from L and remove it from L

STEP 3 (Sub-problem solution)

Solve the sub-problem to obtain the lower bound lb

STEP 4 (Constraint generation)

```
Try to insert integer solutions from lb in ub

if lb = \emptyset or ub \leq lb then

Go to STEP 2.

else if violated constraints are identified for \{x \in lb | \nexists y \in ub, y \leq x\} then

Add them to the model and go to STEP 3.

else

Go to STEP 5.

end if
```

STEP 5 (Branching)

Branch on variable and introduce new sub-problems in L. Go to STEP 2.

THE MULTI-MODAL TRAVELING SALESMAN PROBLEM

Data:

G = (V, E): an undirected valuated graph C is a set of colors Each $e \in E$ has a color $k \in C$

Goal:

Find a Hamiltonian cycle Two objectives:

- 1. Minimize the total length of the cycle
- 2. Minimize the number of colors appearing on the cycle

INTEGER PROGRAM

Variables
$$x_e = \begin{cases} 1 & \text{if } e \in E \text{ is used,} \\ 0 & \text{otherwise.} \end{cases}$$

 $u_k = \begin{cases} 1 & \text{if } k \in C \text{ is used,} \\ 0 & \text{otherwise.} \end{cases}$

Constants and notations

 $\forall e \in E, \ \delta(e) = k \in C \text{ the color of } e$

$$\forall k \in C, \ \zeta(k) = \{e \in E | \delta(e) = k\}$$

 $\forall S \subset V, \ \omega(S) \ = \ \{e = (i, j) \in E | i \in S \text{ and } j \in V \setminus S\}$

INTEGER PROGRAM

 $\sum_{e \in E} c_e x_e$ Objective functions \min $\min \qquad \sum_{k \in C} u_k$ Constraints $\sum x_e = 2$ $\forall i \in V$ $e \in \omega(\{i\})$ $\sum x_e \geq 2 \qquad \qquad \forall S \subset V, 3 \leq |S| \leq |V| - 3$ $e \in \omega(S)$ $x_e \leq u_{\delta(e)} \qquad \forall e \in E$ $x_e \in \{0,1\} \quad \forall e \in E$ $u_k \in \{0,1\} \quad \forall k \in C$

VALID CONSTRAINTS

$$u_k \leq \sum_{e \in \zeta(k)} x_e \quad \forall k \in C$$
$$\sum_{k \in C} \gamma_i^k u_k \geq 2 \qquad \forall i \in V$$
$$\sum_{k \in C} \lambda_k(S) u_k \geq 2 \qquad \forall S \in V, 3 \leq |S| \leq |V| - 3$$

with

$$\gamma_i^k = \begin{cases} 0 & \text{if } \nexists e \in \omega(\{i\}), e \in \zeta(k), \\ 1 & \text{if } \exists ! e \in \omega(\{i\}), e \in \zeta(k), \\ 2 & \text{otherwise.} \end{cases} \quad \lambda_k(S) = \begin{cases} 0 & \text{if } \nexists e \in \omega(S), e \in \zeta(k), \\ 1 & \text{if } \exists ! e \in \omega(S), e \in \zeta(k), \\ 2 & \text{otherwise.} \end{cases}$$

Initial sub-problem :

$$\min \qquad \sum_{e \in E} c_e x_e$$
$$\min \qquad \sum_{k \in C} u_k$$

$$\sum_{e \in \omega(\{i\})} x_e = 2 \qquad \forall i \in V$$

$$x_e \leq u_{\delta(e)} \qquad \forall e \in E$$

$$u_k \leq \sum_{e \in \zeta(k)} x_e \qquad \forall k \in C$$

$$\sum_{k \in C} \gamma_i^k u_k \geq 2 \qquad \forall i \in V$$

$$0 \leq x_e \leq 1 \qquad \forall e \in E$$

$$0 \leq u_k \leq 1 \qquad \forall k \in C$$

Solve the following problem for different values of ϵ

$$\min \sum_{e \in E} c_e x_e + m \sum_{k \in C} u_k$$

$$\sum_{e \in \omega(\{i\})} x_e = 2 \qquad \forall i \in V$$

$$x_e \leq u_{\delta(e)} \qquad \forall e \in E$$

$$u_k \leq \sum_{e \in \zeta(k)} x_e \qquad \forall k \in C$$

$$\sum_{k \in C} \gamma_i^k u_k \geq 2 \qquad \forall i \in V$$

$$\sum_{k \in C} u_k \leq \epsilon$$

$$0 \leq x_e \leq 1 \qquad \forall e \in E$$

$$0 \leq u_k \leq 1 \qquad \forall k \in C$$

After founding non-dominated solution for a given $\epsilon,$ identify violated constraints and add them

ub is the upper bound. Set $L_{tabu} \leftarrow \emptyset$ and continue $\leftarrow TRUE$

```
while continue is TRUE do

continue \leftarrow FALSE

pruned \leftarrow TRUE

Set \epsilon \leftarrow \alpha with \alpha an integer such that \alpha \notin L_{tabu} and \nexists \beta \notin L_{tabu} such that \alpha < \beta \leq |C|.
```

while $\epsilon \neq 0$ do

Solve the linear program. Let (x^*, u^*) be the optimal solution and l^* the length of the solution and o^* the number of colors used.

${\bf if}$ a solution is found ${\bf then}$

```
if the solution is feasible and integer or the solution is dominated by ub then
```

if the solution is feasible and integer then

Try to add it in ub and update ub if necessary

```
end if
```

```
\begin{array}{l} L_{\mathrm{tabu}} \leftarrow \{ \lceil o^* \rceil \dots \epsilon \} \\ \mathbf{else} \\ pruned \leftarrow \mathrm{FALSE} \\ \mathrm{if \ constraints \ violated \ by \ } (x^*, u^*) \ \mathrm{are \ identified \ then} \\ \mathrm{Stock \ them} \\ \mathbf{end \ if} \\ \mathbf{else} \\ L_{\mathrm{tabu}} \leftarrow \{1 \dots \epsilon\} \\ \mathbf{end \ if} \end{array}
```

```
Set \epsilon \leftarrow \alpha with \alpha an integer such that \alpha \notin L_{tabu} and \nexists \beta \notin L_{tabu} such that \alpha < \beta < o^*.
end while
```

```
if violated constraints have been found then
Add them to the model
continue \leftarrow TRUE
end if
end while
```


18 / 21

CONSTRAINT GENERATION, CUTTING, AND BRANCHING

Constraint generation

Connectivity constraints \rightarrow min-cut problem

Call to a CONCORDE function [Padberg & Rinaldi, 1990]

Cutting

 $\forall \epsilon$, the sub-problem is infeasible

 $\forall \epsilon$, the solution is either feasible or dominated by ub

Branching

First on the u_k variables then on the x_e

Priority on the variable that is non integral for the most values of ϵ

Initial upper bound

```
\epsilon\text{-constraint} method + MIP/CONCORDE
```

Computational results

C	V	#nodes	#u	#x	#cut	#Pareto	#Parub	#time
20	20	270.1	129.0	5.6	57.4	10.3	4.4	4.1
20	30	573.6	256.2	30.1	132.8	13.9	4.8	28.2
20	40	1002.9	410.2	90.8	225.6	15.9	5.3	100.8
20	50	1738.6	563.7	305.1	366.7	17.4	5.9	347.9
30	20	506.1	248.2	4.4	85.0	12.4	4.5	10.8
30	30	1284.6	592.5	49.3	193.4	16.4	4.5	96.7
30	40	2536.7	1084.2	183.6	352.3	18.8	4.2	484.3
30	50	5519.5	1880.9	878.4	590.8	21.7	5.0	1618.9
40	20	799.6	396.5	2.8	100.6	12.1	4.1	20.6
40	30	2241.6	1097.4	22.9	258.8	17.8	3.6	247.6
40	40	5684.9	2606.2	235.8	535.8	21.7	3.6	1852.6
40	50	14297.6	5321.8	1826.5	870.6	26.6	5.4	7200.4
50	20	804.0	400.4	1.1	98.8	12.4	4.6	21.4
50	30	3682.4	1806.6	34.1	336.4	18.8	3.7	541.4
50	40	10451.6	5053.2	172.1	748.6	23.9	4.2	5865.0
50	50	18975.5	8284.5	1202.8	1156.4	27.7	4.2	19942.8

CONCLUSIONS AND PERSPECTIVES

▶ Branch-and-cut algorithm able to solve a multi-objective problem in one run

• Identify new valid constraints \rightarrow variables u_k

Rules to choose on which variables to branch

Progressive partition of the objective space