
Multi-objective branch-and-cut algorithm
and

multi-modal traveling salesman problem

Nicolas Jozefowiez1, Gilbert Laporte2, Frédéric Semet3

1. LAAS-CNRS, INSA, Université de Toulouse, Toulouse, France,
nicolas.jozefowiez@laas.fr

2. CIRRELT, HEC, Montréal, Canada, gilbert@crt.umontreal.ca

3. LAGIS, Ecole Centrale de Lille, Villeneuve d’Ascq, France, frederic.semet@ec-lille.fr

1 / 21

Outlines

! Branch-and-cut algorithm

! Multi-objective optimization

! A multi-objective branch-and-cut algorithm

! The multi-modal traveling salesman problem

2 / 21

Branch-and-cut algorithm

A method to solve integer programs:

min cx

Ax ≥ b

x ≥ 0 and integer

3

4

3

2

1

0 1 2 4 5

5

0

Branch−and−bound algorithm Cutting plane method

3 / 21

Branch-and-bound algorithm

Explicit enumeration

Build an exploration tree → at each node, branching on a variable

Keep the best found feasible solution (the upper bound ub)

Implicit enumeration

At each node, a lower bound lb is computed

A node can be pruned if given the branching choice:

1. the problem is infeasible (pruned by infeasiblity)

2. the solution is feasible (pruned by optimality)

3. lb ≥ ub (pruned by bound)

4 / 21

Cutting plane method

5

3

4

3

2

1

0
0 1 2 4 5

min −1.00x1 − 0.64x2

50x1 + 31x2 ≤ 250

3x1 − 2x2 ≥ −4

x1, x2 ≥ 0 and integer

5 / 21

Cutting plane method

5

3

4

3

2

1

0
0 1 2 4 5

min −1.00x1 − 0.64x2

50x1 + 31x2 ≤ 250

3x1 − 2x2 ≥ −4

x1, x2 ≥ 0 and integer

5 / 21

Cutting plane method

5

3

4

3

2

1

0
0 1 2 4 5

min −1.00x1 − 0.64x2

50x1 + 31x2 ≤ 250

3x1 − 2x2 ≥ −4

x2 ≤ 4

x1, x2 ≥ 0 and integer

5 / 21

Cutting plane method

5

3

4

3

2

1

0
0 1 2 4 5

min −1.00x1 − 0.64x2

50x1 + 31x2 ≤ 250

3x1 − 2x2 ≥ −4

x2 ≤ 4

x1, x2 ≥ 0 and integer

5 / 21

Cutting plane method

5

3

4

3

2

1

0
0 1 2 4 5

min −1.00x1 − 0.64x2

50x1 + 31x2 ≤ 250

3x1 − 2x2 ≥ −4

x2 ≤ 4

3x1 + 2x2 ≤ 15

x1, x2 ≥ 0 and integer

5 / 21

Cutting plane method

3

4

3

2

1

0
0 1 2 4 5

5

min −1.00x1 − 0.64x2

50x1 + 31x2 ≤ 250

3x1 − 2x2 ≥ −4

x2 ≤ 4

3x1 + 2x2 ≤ 15

x1, x2 ≥ 0 and integer

5 / 21

A simple branch-and-cut algorithm

STEP 1 (Root of the tree)
Generate an initial upper bound ub
Define a first sub-problem
Insert the sub-problem in a list L

STEP 2 (Stopping criterion)
If L = ∅ then STOP, else choose a sub-problem from L and remove it from L

STEP 3 (Sub-problem solution)
Solve the sub-problem to obtain the lower bound lb

STEP 4 (Constraint generation)
if there is no solution or lb ≥ ub then

Go to STEP 2.
else if the solution is integer then

ub ← lb and go to STEP 2.
else if violated constraints are identified then

Add them to the model and go to STEP 3.
else

Go to STEP 5.
end if

STEP 5 (Branching)
Branch on variable and introduce new sub-problems in L. Go to STEP 2.

6 / 21

Multi-objective optimization problem

(PMO) =

(
min F (x) = (f1(x), f2(x), . . . , fn(x))

s.t. x ∈ Ω

with:

! n ≥ 2 : number of objectives

! F = (f1, f2, . . . , fn) : vector of functions to optimize

! Ω ⊆ Rm : set of feasible solutions

! x = (x1, x2, . . . , xm) ∈ Ω : a feasible solution

! Y = F (Ω) : objective space

! y = (y1, y2, . . . , yn) ∈ Y avec yi = fi(x) : a point in the objective space

7 / 21

Pareto dominance relation

A solution x dominates ()) a solution y if and only if
∀i ∈ {1, . . . , n}, fi(x) ≤ fi(y) and ∃i ∈ {1, . . . , n} such that fi(x) < fi(y).

f1

f2

A

B

C

D

E

8 / 21

Exact algorithms for MOP

n = 2 n ≥ 2
Iteration Two-Phase method K-PPM

PPM
Multi-objective
method

[Sourd, Spanjaard, 2008] (*)

(*) does not work if the aggregated problem is NP-hard

⇒ a multi-objective branch-and-cut algorithm for multi-objective integer programs

Lower bound ⇔ multi-objective linear program

Possibility to use scalar techniques to solve it to optimality (or a subset that can
be extended)

9 / 21

Adaptations to a multi-objective problem

Upper bound = set of non-dominated solutions found during the search

Lower bound = set of non-dominated points in the objective space such that all
feasible solutions are dominated by these points

(4)

Lower bound

Upper bound

(1) (2)

(3)

10 / 21

A multi-objective branch-and-cut algorithm

STEP 1 (Root of the tree)
Generate an initial upper bound ub
Define a first sub-problem
Insert the sub-problem in a list L

STEP 2 (Stopping criterion)
If L = ∅ then STOP, else choose a sub-problem from L and remove it from L

STEP 3 (Sub-problem solution)
Solve the sub-problem to obtain the lower bound lb

STEP 4 (Constraint generation)
Try to insert integer solutions from lb in ub
if lb = ∅ or ub) lb then

Go to STEP 2.
else if violated constraints are identified for {x ∈ lb|!y ∈ ub, y) x} then

Add them to the model and go to STEP 3.
else

Go to STEP 5.
end if

STEP 5 (Branching)
Branch on variable and introduce new sub-problems in L. Go to STEP 2.

11 / 21

The multi-modal traveling salesman problem

Data:
G = (V, E) : an undirected valuated graph
C is a set of colors
Each e ∈ E has a color k ∈ C

Goal:
Find a Hamiltonian cycle
Two objectives:

1. Minimize the total length of the cycle
2. Minimize the number of colors appearing on the cycle

12 / 21

Integer program

Variables xe =

(
1 if e ∈ E is used,

0 otherwise.

uk =

(
1 if k ∈ C is used,

0 otherwise.

Constants and notations ∀e ∈ E, δ(e) = k ∈ C the color of e

∀k ∈ C, ζ(k) = {e ∈ E|δ(e) = k}

∀S ⊂ V, ω(S) = {e = (i, j) ∈ E|i ∈ S and j ∈ V \ S}

13 / 21

Integer program

Objective functions min
X

e∈E

cexe

min
X

k∈C

uk

Constraints
X

e∈ω({i})
xe = 2 ∀i ∈ V

X

e∈ω(S)

xe ≥ 2 ∀S ⊂ V, 3 ≤ |S| ≤ |V | − 3

xe ≤ uδ(e) ∀e ∈ E

xe ∈ {0, 1} ∀e ∈ E

uk ∈ {0, 1} ∀k ∈ C

14 / 21

Valid constraints

uk ≤
X

e∈ζ(k)

xe ∀k ∈ C

X

k∈C

γk
i uk ≥ 2 ∀i ∈ V

X

k∈C

λk(S)uk ≥ 2 ∀S ∈ V, 3 ≤ |S| ≤ |V | − 3

with

γk
i =

8
><

>:

0 if !e ∈ ω({i}), e ∈ ζ(k),

1 if ∃!e ∈ ω({i}), e ∈ ζ(k),

2 otherwise.

λk(S) =

8
><

>:

0 if !e ∈ ω(S), e ∈ ζ(k),

1 if ∃!e ∈ ω(S), e ∈ ζ(k),

2 otherwise.

15 / 21

Computation of the lower bound

Initial sub-problem :

min
X

e∈E

cexe

min
X

k∈C

uk

X

e∈ω({i})
xe = 2 ∀i ∈ V

xe ≤ uδ(e) ∀e ∈ E

uk ≤
X

e∈ζ(k)

xe ∀k ∈ C

X

k∈C

γk
i uk ≥ 2 ∀i ∈ V

0 ≤ xe ≤ 1 ∀e ∈ E

0 ≤ uk ≤ 1 ∀k ∈ C

16 / 21

Computation of the lower bound

Solve the following problem for different values of ε

min
X

e∈E

cexe + m
X

k∈C

uk

X

e∈ω({i})
xe = 2 ∀i ∈ V

xe ≤ uδ(e) ∀e ∈ E

uk ≤
X

e∈ζ(k)

xe ∀k ∈ C

X

k∈C

γk
i uk ≥ 2 ∀i ∈ V

X

k∈C

uk ≤ ε

0 ≤ xe ≤ 1 ∀e ∈ E

0 ≤ uk ≤ 1 ∀k ∈ C

After founding non-dominated solution for a given ε, identify violated constraints
and add them

17 / 21

Computation of the lower bound
ub is the upper bound. Set Ltabu ← ∅ and continue ← TRUE

while continue is TRUE do
continue ← FALSE
pruned ← TRUE
Set ε ← α with α an integer such that α /∈ Ltabu and !β /∈ Ltabu such that α < β ≤ |C|.

while ε %= 0 do
Solve the linear program. Let (x∗, u∗) be the optimal solution and l∗ the length of the
solution and o∗ the number of colors used.

if a solution is found then
if the solution is feasible and integer or the solution is dominated by ub then

if the solution is feasible and integer then
Try to add it in ub and update ub if necessary

end if
Ltabu ← {&o∗' . . . ε}

else
pruned ← FALSE
if constraints violated by (x∗, u∗) are identified then

Stock them
end if

end if
else

Ltabu ← {1 . . . ε}
end if

Set ε ← α with α an integer such that α /∈ Ltabu and !β /∈ Ltabu such that α < β < o∗.
end while

if violated constraints have been found then
Add them to the model
continue ← TRUE

end if
end while 18 / 21

Computation of the lower bound

length

of colors

18 / 21

Computation of the lower bound

length

of colors

18 / 21

Computation of the lower bound

length

of colors

18 / 21

Computation of the lower bound

length

of colors

18 / 21

Computation of the lower bound

length

of colors

18 / 21

Computation of the lower bound

length

of colors

18 / 21

Computation of the lower bound

length

of colors

18 / 21

Computation of the lower bound

length

of colors

18 / 21

Computation of the lower bound

length

of colors

18 / 21

Computation of the lower bound

length

of colors

18 / 21

Computation of the lower bound

length

of colors

18 / 21

Computation of the lower bound

length

of colors

18 / 21

Computation of the lower bound

length

of colors

18 / 21

Computation of the lower bound

of colors

length

18 / 21

Computation of the lower bound

of colors

length

18 / 21

Computation of the lower bound

of colors

length

18 / 21

Computation of the lower bound

of colors

length

18 / 21

Computation of the lower bound

of colors

length

18 / 21

Computation of the lower bound

of colors

length

18 / 21

Computation of the lower bound

of colors

length

18 / 21

Computation of the lower bound

of colors

length

18 / 21

Computation of the lower bound

of colors

length

18 / 21

Computation of the lower bound

length

of colors

18 / 21

Computation of the lower bound

length

of colors

18 / 21

Computation of the lower bound

length

of colors

18 / 21

Computation of the lower bound

length

of colors

18 / 21

Computation of the lower bound

length

of colors

18 / 21

Computation of the lower bound

length

of colors

18 / 21

Computation of the lower bound

length

of colors

18 / 21

Constraint generation, cutting, and branching

Constraint generation

Connectivity constraints → min-cut problem

Call to a CONCORDE function [Padberg & Rinaldi, 1990]

Cutting

∀ε, the sub-problem is infeasible

∀ε, the solution is either feasible or dominated by ub

Branching

First on the uk variables then on the xe

Priority on the variable that is non integral for the most values of ε

Initial upper bound

ε-constraint method + MIP/CONCORDE

19 / 21

Computational results

|C| |V | #nodes #u #x #cut #Pareto #Parub #time
20 20 270.1 129.0 5.6 57.4 10.3 4.4 4.1
20 30 573.6 256.2 30.1 132.8 13.9 4.8 28.2
20 40 1002.9 410.2 90.8 225.6 15.9 5.3 100.8
20 50 1738.6 563.7 305.1 366.7 17.4 5.9 347.9
30 20 506.1 248.2 4.4 85.0 12.4 4.5 10.8
30 30 1284.6 592.5 49.3 193.4 16.4 4.5 96.7
30 40 2536.7 1084.2 183.6 352.3 18.8 4.2 484.3
30 50 5519.5 1880.9 878.4 590.8 21.7 5.0 1618.9
40 20 799.6 396.5 2.8 100.6 12.1 4.1 20.6
40 30 2241.6 1097.4 22.9 258.8 17.8 3.6 247.6
40 40 5684.9 2606.2 235.8 535.8 21.7 3.6 1852.6
40 50 14297.6 5321.8 1826.5 870.6 26.6 5.4 7200.4
50 20 804.0 400.4 1.1 98.8 12.4 4.6 21.4
50 30 3682.4 1806.6 34.1 336.4 18.8 3.7 541.4
50 40 10451.6 5053.2 172.1 748.6 23.9 4.2 5865.0
50 50 18975.5 8284.5 1202.8 1156.4 27.7 4.2 19942.8

20 / 21

Conclusions and perspectives

! Branch-and-cut algorithm able to solve a multi-objective problem in one run

! Identify new valid constraints → variables uk

! Rules to choose on which variables to branch

! Progressive partition of the objective space

21 / 21

