

Problème d'organisation des tournées de collecte de déchets : prise en compte du coût et de la stabilité

Frédérique BANIEL (LGP / ENIT - MOGISA / LAAS-CNRS)
Marie-José HUGUET (MOGISA / LAAS-CNRS)
Thierry VIDAL (LGP/ ENIT)

Plan

- 1. Position du problème
 - 1. Contexte
 - 2. présentation du problème de collecte étudié
 - 3. Critères envisagés
- 2. Méthodes utilisés pour la gestion des collectes
 - 1. Création hebdomadaire
 - 2. Evolution des circuits
- 3. Expérimentations
- 4. Conclusion et Perspectives

Contexte

But : Maintenir la stabilité des collectes lors

- Organisation des circuits de collecte des déchets pour les différents passages dans la semaine,
- **Réorganisation** des circuits de collecte des déchets ménagers dans une collectivité locale.
- 4 objectifs principaux :
 - · coûts de collecte
 - qualité de service pour les usagers
 - Impact environnemental
 - Condition de travail des employés

Partenariat :

- ADEME : conseil, vision globale
- Collectivité locale : la CAM problèmes et données réelles

Contexte

Organisation de la CAM :

- 1 ou 2 collectes d'Ordures Ménagères par semaine,
- Dépôt et point de vidage unique,
- Taux présentation début semaine > taux présentation fin semaine.

· Contraintes fortes:

- Passer devant toutes les habitations à collecter,
- Nombre de véhicules limité et hétérogènes,
- Tonnage à collecter par véhicule limité,
- Passage à certaines heures obligatoires (ou interdites),
- Temps de travail limité.
- Modélisation : problème de tournées de véhicules (Vehicle Routing Problem ou VRP)

Vehicle Routing Problem

Minimiser

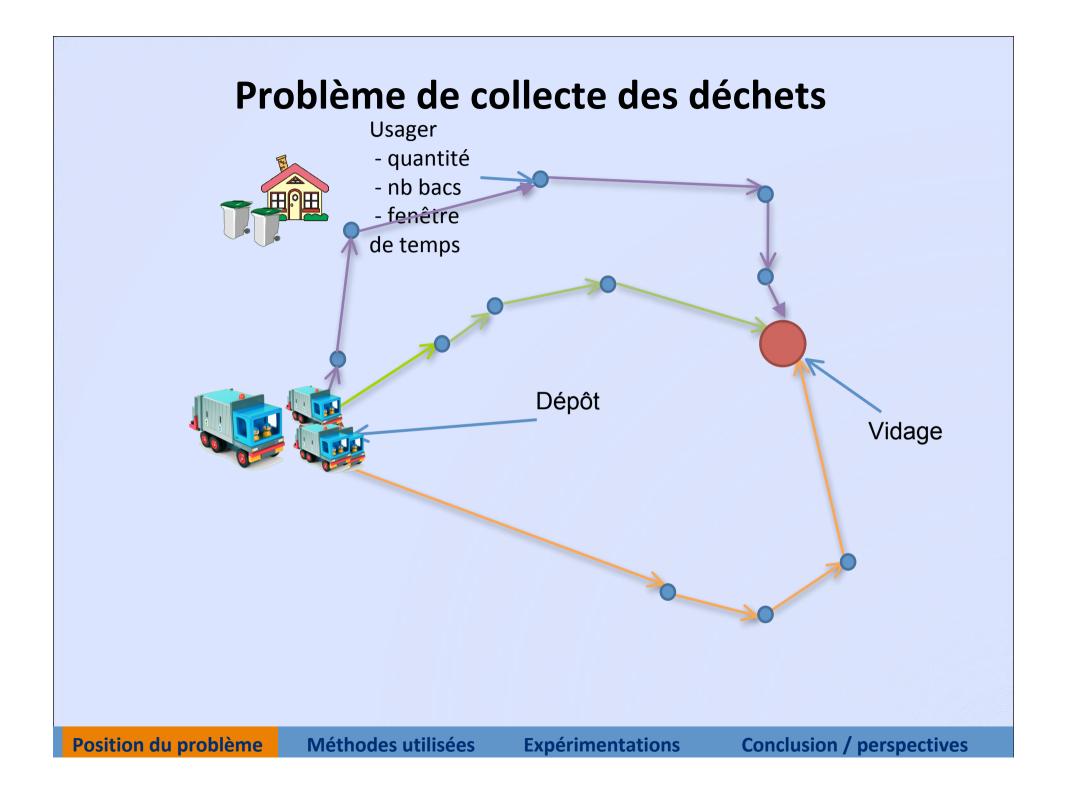
$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} \sum_{k=1}^{m} x_{ij}^{k} \quad (eq1)$$

Contraintes:

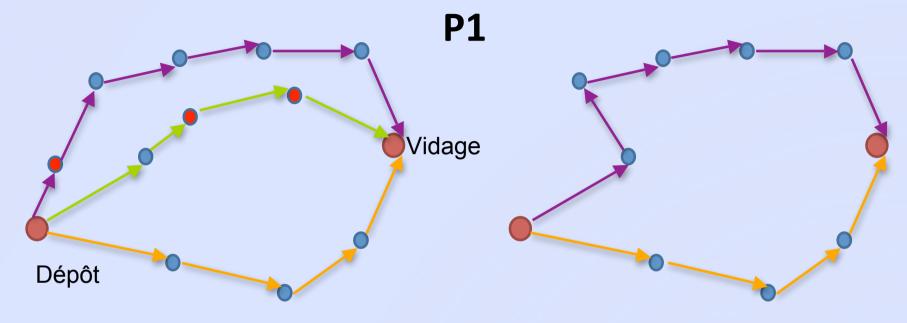
$$\sum_{i=1}^{n} \sum_{k=1}^{m} x_{ij}^{k} = 1, j = 2, ..., n \quad (eq \ 2)$$

$$\sum_{i=1}^{n} \sum_{k=1}^{m} x_{ij}^{k} = 1, i = 2, ..., n \quad (eq 3)$$

$$\sum_{i=1}^{n} x_{ip}^{k} - \sum_{j=1}^{n} x_{pj}^{k} = 0, k = 1, ..., m; p = 1, ..., n \text{ (eq 4)}$$


$$\sum_{i=1}^{n} d_i \left(\sum_{j=1}^{n} x_{ij}^k \right) \le D_k, k = 1, ..., m \ (eq 5)$$

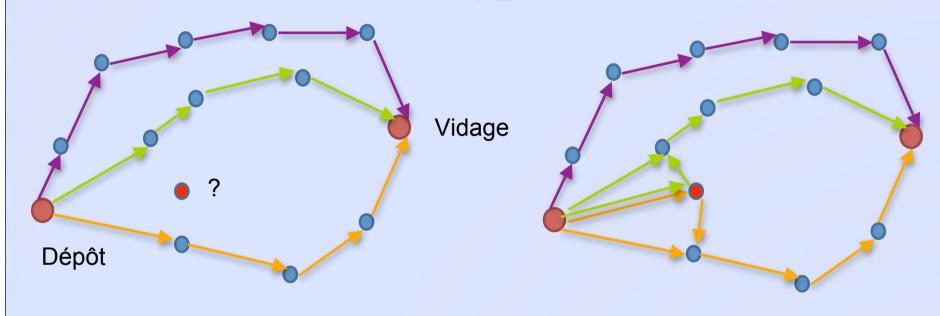
$$\sum_{i=1}^{n} t_{i}^{k} \left(\sum_{j=1}^{n} x_{ij}^{k} \right) + \sum_{i=1}^{n} \sum_{j=1}^{n} t_{ij} x_{ij}^{k} \le T_{k}, k = 1, ..., m \ (eq \ 6)$$


$$\sum_{j=2}^{n} x_{1j}^{k} \le 1, k = 1, ..., m \ (eq \ 7)$$

$$\sum_{i=2}^{n} x_{i1}^{k} \le 1, k = 1, ..., m \quad (eq \ 8)$$

$$X = (x_{ij}) \in S \ (eq \ 9)$$

Présentation du problème « hebdomadaire » :


Collecte début de semaine

Collecte fin de semaine

• Organisation hebdomadaire:

- Créer les circuits de collecte pour le début et la fin de semaine,
- Moins de nœuds à collecter en fin de semaine et quantité inférieure,
- Proposition de méthodes de construction des circuits sur l'ensemble de la semaine.

Présentation du problème « dynamique » : P2

• Réorganisation :

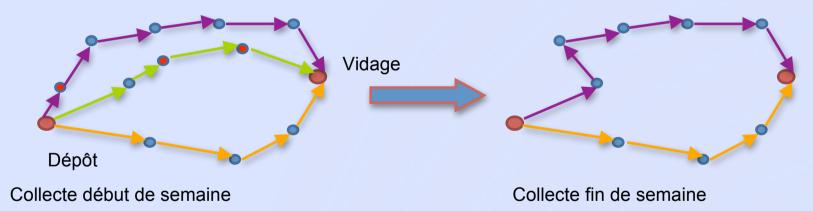
- Augmentation de la population de 2% par an,
- Augmentation de la quantité de déchets de 2% par an et par habitant,
- Proposition de méthodes d'actualisation des tournées.

Critères envisagés

BUT : obtenir une solution de faible coût qui perturbe le moins possible la solution initiale

\ stabilité

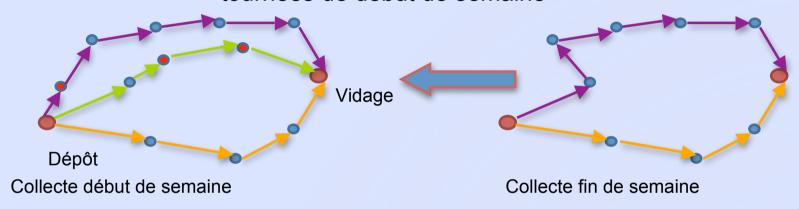
- Organisation des circuits hebdomadaire et réorganisation :
 - Coûts de collecte (= distance)
 - Stabilité
 - · En général :
 - Ecart en distance, en temps de travail, en nombre de véhicules
 - Qualité de service (= point de vue usagers) :
 - modification de l'heure de collecte \ Ecart horaire.
 - Conditions de travail (= point de vue équipe) :
 - ajout/suppression de points de collecte dans un circuit de collecte,
 - changement de l'ordre de passage


\ Ecart composition des circuits et Ecart ordre de visite

Méthodes utilisées

Méthodes heuristiques dédiées pour minimiser les écarts.

• P1 : Organisation hebdomadaire des tournées :


 Construire les tournées de début de semaine PUIS construire les tournées de fin de semaine :

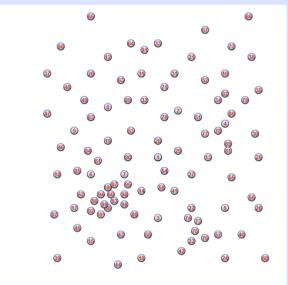
- D1 : Élimine plus petite tournée (en terme capacité),
- D2 : Élimine au hasard,
- D3 : Plus de "chances " d'éliminer plus petite tournée (en terme de nombre de noeuds),

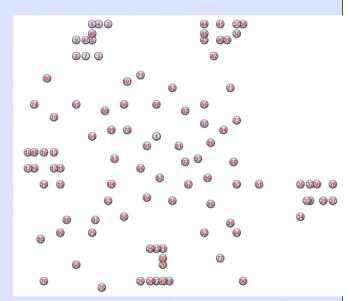
Méthodes utilisées

- P1 : Organisation hebdomadaire des tournées :
 - Construire les tournées de fin de semaine PUIS construire les tournées de début de semaine

- D4 : **Créer des circuits** avec les noeuds manquants en essayant de les fondrent avec les autres.
- D5 : Créer des **circuits proches** des noeuds à collecter que en début de semaine.
- D6 : Création des tournées "from scratch" pour le début et la fin de semaine.


Méthodes utilisées


Méthodes heuristiques dédiées pour minimiser les écarts.


· P2 : Réorganisation dynamique des tournées :

- Insertion nouveaux noeuds :
 - I1: Inserer au plus proche voisin,
 - 12 : 11 + méthodes de recherche locale (or-opt, inter-change),
 - 13 : reconstruction "from scratch".
- Augmentation de la quantité à collecter :
 - 14 : **retirer** noeuds dans tournées sur-chargées pour insérer au plus proches,
 - I5: I4 + méthodes de recherche locale (or-opt, inter-change),
 - 16: reconstruction "from scratch".

- Instances utilisées :
 - Instances de Solomon : 3 types C, R et RC,
 - 100 noeuds à collecter,
 - VRP Time Window.

Instance C

Instance R

Instance RC

- Modifications:
 - Besoin de modifications des données des intances pour les problèmes considérés.

- Organisation hebdomadaire des tournées :
 - Modifications:
 - 10 / 20 / 30 noeuds sélectionnés au hasard pour être collecter 1 fois
 - Quantité sur les noeuds collecter 1 fois * 1.6
 - Quantité sur les noeuds à collecter 2 fois fin semaine *0.80

			Stabilité					
Méthodes	Instances	Coût	distance	Nb véhicules	Temps travail	Horaire noeuds	Comp. circuit	Ordre dans circuit
D1	C1	1733	181	0	397	729	4	10
D2	C1	1838	250	0	926	1939	15	15
D3	C1	1741	172	0	449	668	1	9
D4	C1	1782	85	1+	138	236	0	2
D5	C1	1782	111	1-	258	234	0	4
D6	C1	1782	403	1-	1100	5141	48	27

• D1 : plus petit coût

• D4 : plus petite stabilité sauf 1 camion en +

• D5 : compromis entre coût et stabilité (1 véhicule en moins)

- Réorganisation des tournées : insertion noeuds
 - Modifications:
 - Supprimer 1 ou plusieurs nœuds au hasard \ Solution initiale
 - Insérer les nœuds \ Nouvelle solution

			Stabilité					
Méthodes	Instances	Coût	distance	Nb véhicules	Temps travail	Horaire noeuds	Comp. circuit	Ordre dans circuit
I1	C1	1172	224		425	2300	7	12
I2	C1	1159	211	77	467	3155	8	16
13	C1	924	-24		643	5020	14	37

- I1 : stabilité intéressante mais méthode non adaptée si insertion fait dépasser capacité du camion
- 12 : bon compromis entre coût et stabilité
- 13 : meilleur coût, moins bonne stabilité

- Réorganisation des tournées : augmentation capacité
 - Modifications:
 - Baisse la quantité de 10 nœuds à 20 et 50 % \ Solution initiale
 - Augmenter ensuite cette quantité \ Nouvelle Solution

			Stabilité					
Méthodes	Instances	Coût	distance	Nb véhicules	Temps travail	Horaire noeuds	Comp. circuit	Ordre dans circuit
14	C1	995			204	1501	2	5
15	C1	993			205	1523	2	5
16	C1	984			371	3755	3	14

• 14 : meilleur stabilité, moins bon coût

• 15 : meilleur compromis sur le coût et la stabilité

• 16 : meilleur coût, moins bonne stabilité

Conclusion et perspectives

Proposition de méthodes dédiées :

- Problème d'organisation hebdomadaire des tournées,
- Réorganisation dynamique des tournées.

Résultats :

- Création hebdomadaire : méthode de création des tournées (D5)
- Evolution dynamique des tournées : méthodes d'insertion (I2) et gestion de l'augmentation des quantités (14 ou 15 selon critère prédominant).

Expérimentations

Perspectives :

- Utiliser des méthodes méta-heuristiques,
- Développer une méthode multi-critères.