Cooperative Backup in Sparsely-Connected Mobile Systems

D. Powell, L. Courtès, O. Hamouda, M. Kaâniche, M.-O. Killijian

LAAS-CNRS, Toulouse, France

Internet of Things Workshop, LAAS-CNRS, 21 October 2008

Mobile devices are subject to damage, loss, theft...

- Mobile devices are subject to damage, loss, theft...
- Sypical data backup techniques...
 - "synchronization" between mobile device and desktop machine
- **⊚** ... are constraining or costly

- require access to desktop machine
- potentially costly communication (e.g., GPRS, UMTS)
- long distance wireless bandwidth increasing more slowly than rate of production of data on mobile devices

- Mobile devices are subject to damage, loss, theft...
- Sypical data backup techniques...
 - "synchronization" between mobile device and desktop machine
- **⊚** ... are constraining or costly

- require access to desktop machine
- potentially costly communication (e.g., GPRS, UMTS)
- long distance wireless bandwidth increasing more slowly than rate of production of data on mobile devices

⇒ Backup opportunities are rare, data is at risk

Cooperative Backup

Cooperative Backup

Key Ideas

- leverage computing device ubiquity
- opportunistic replication to neighboring devices
- free shortrange P2P communication (Wi-Fi, Bluetooth)

Cooperative Backup

Key Ideas

- leverage computing device ubiquity
- opportunistic replication to neighboring devices
- free shortrange P2P communication (Wi-Fi, Bluetooth)

Salient Points

- adapted to sparsely-connected mobile systems with intermittent connectivity
 - *intermediate backup* on neighboring devices
 - *final backup* on reliable Internet store
- continuous backup & replication

1	
((i)) ((ii)) ((ii))	

Internet store

Challenges

Backup availability

- participants may fail
- participants may maliciously delete backups

Performance and security of intermediate backups

- unpredictable encounters and encounter durations
- scarce resources (storage, energy)
- participants may maliciously read or modify backups
- Cooperation effectiveness and security
 - participants may be selfish
 - participants may maliciously sabotage cooperation

♀ Issues

- participants may maliciously delete backups
- participants may fail

Issues

- participants may maliciously delete backups
- participants may fail
- need replicated intermediate backups

Issues

- participants may maliciously delete backups
- participants may fail
- need replicated intermediate backups

Optimization goals

- data availability...
- ... and storage efficiency

Issues

- participants may maliciously delete backups
- participants may fail
- need replicated intermediate backups

Optimization goals

- data availability...
- ... and storage efficiency

Approach

- devise replication strategies
- evaluate the efficiency/availability tradeoff

- send a total of *n* copies of each data item
- send 1 copy per contributor
- recover from any 1 contributor out of *n*

- send a total of n copies of each data item
- send 1 copy per contributor
- recover from any 1 contributor out of *n*

- send a total of *n* copies of each data item
- send 1 copy per contributor
- recover from any 1 contributor out of *n*

- send a total of n copies of each data item
- send 1 copy per contributor
- recover from any 1 contributor out of *n*

- send a total of *n* copies of each data item
- send 1 copy per contributor
- recover from any 1 contributor out of *n*

- send a total of *n* copies of each data item
- send 1 copy per contributor
- recover from any 1 contributor out of *n*

Algorithm

- send a total of *n* copies of each data item
- send 1 copy per contributor
- recover from any 1 contributor out of *n*

Dependability & storage cost analysis

• tolerate *f* contributor faults \Rightarrow storage cost *f* + 1

Basics

- *k*-block input \rightarrow *n* coded blocks, *n* > *k*
- *m* blocks suffice to recover input data $k \le m < n$
- tolerate *n*-*m* faults
- storage cost: S = n/k

Basics

- *k*-block input \rightarrow *n* coded blocks, *n* > *k*
- *m* blocks suffice to recover input data $k \le m < n$
- tolerate *n*-*m* faults
- storage cost: S = n/k

Optimal erasure codes

- $m = k \Rightarrow$ tolerate *n*-*k* faults
- notation: (*n*,*k*) code
- *n* and *k* are user-defined parameters
- $k = 1 \Leftrightarrow$ simple replication

- 1. (*n*,*k*) erasure coding \rightarrow *n* coded blocks
- 2. send 1 coded block per contributor
- 3. recover from any *k* contributors out of *n*

- 1. (*n*,*k*) erasure coding \rightarrow *n* coded blocks
- 2. send 1 coded block per contributor
- 3. recover from any k contributors out of n

- 1. (*n*,*k*) erasure coding \rightarrow *n* coded blocks
- 2. send 1 coded block per contributor
- 3. recover from any k contributors out of n

- 1. (*n*,*k*) erasure coding \rightarrow *n* coded blocks
- 2. send 1 coded block per contributor
- 3. recover from any k contributors out of n

- 1. (*n*,*k*) erasure coding \rightarrow *n* coded blocks
- 2. send 1 coded block per contributor
- 3. recover from any k contributors out of n

- 1. (*n*,*k*) erasure coding \rightarrow *n* coded blocks
- 2. send 1 coded block per contributor
- 3. recover from any k contributors out of n

Erasure Codes

Algorithm

- 1. (*n*,*k*) erasure coding \rightarrow *n* coded blocks
- 2. send 1 coded block per contributor
- 3. recover from any k contributors out of n

Erasure Codes

Algorithm

- 1. (*n*,*k*) erasure coding \rightarrow *n* coded blocks
- 2. send 1 coded block per contributor
- 3. recover from any k contributors out of n

Dependability & storage cost analysis

• tolerate *f* contributor faults \Rightarrow storage cost = 1+*f*/*k*

Erasure Codes

Storage cost for *f*=2

S

Device failure model

- crash failures
- stochastic process
- exponential distribution (rate λ)

Device failure model

- crash failures
- stochastic process
- exponential distribution (rate λ)

Device mobility model

- stochastic processes
- exponential distributions
 - encounters with other devices (rate α)
 - connections to Internet (rate β)

Device failure model

- crash failures
- stochastic process
- exponential distribution (rate λ)

Device mobility model

- stochastic processes
- exponential distributions
 - encounters with other devices (rate α)
 - connections to Internet (rate β)

Device failure model

- crash failures
- stochastic process
- exponential distribution (rate λ)

Device mobility model

- stochastic processes
- exponential distributions
 - encounters with other devices (rate α)
 - connections to Internet (rate β)

System model

- (*n*,*k*) erasure code : up to *n* fragments sent to contributors
- data safe

 \Rightarrow original data or *k* fragments have reached Internet store

• data lost

 \Rightarrow data owner and contributors failed before k fragments reached Internet store

(n,k) = (2,1)

(n,k) = (3,2)

(n,k) = (5,3)

Dependability Measurements

Dependability Measurements

PL: probability of data loss

 Probability of data owner and contributors failing before sufficient fragments have reached Internet store

Dependability Measurements

PL: probability of data loss

 Probability of data owner and contributors failing before sufficient fragments have reached Internet store

LRF: data loss reduction factor

- PL compared to non-cooperative backup
 - LRF = PL_{ref} / PL
- Non-cooperative backup
 - only one device $\Leftrightarrow \alpha = 0$
 - either fails or connects to the Internet
 - $PL_{ref} = \lambda / (\lambda + \beta)$

PL: Probability of data loss

(connectivity ratio $\alpha/\beta = 100$)

LRF vs. basic parameters

(n,k) = (3,2)

LRF vs. basic parameters

(n,k) = (3,2)

LRF vs. basic parameters

(n,k) = (3,2)

LRF vs. basic parameters

(n,k) = (3,2)

 α : device encounter rate

- β : internet connection rate
- λ : device failure rate

10000 1000 loss reduction factor

LRF

Data loss probability

Backup Availability Summary

- Intermediate backups through cooperation
- \subseteq LRF up to connectivity ratio α/β
- **Order of magnitude gain when** α/β **>10 and** β/λ **>2**
- Erasure codes have small advantage over simple replication in only a very narrow domain

Related Work

- - UC Berkeley & Intel Research (USA)
- UbiStore [Tan+ 2007]
 - NICTA & Univ. New South Wales (Australia)
- Swarm-based replication maintenance [Ball+ 2007]
 - Univ. Kent (GB)
- **Ubiquitous Data Backup** [Aoshima 2007]
 - Hitachi, Ltd. (Japan)
- Delay- and disruption-tolerant networks [Fall+ 2003]
 - Intel Research (USA) and others

Future Directions

- Cooperation policies
- Effect of data-chopping on dependability
- Rate-less erasure codes
- \bigcirc Experimental assessment of α and β (and λ)

References

MoSAIC

- Killijian+ "Collaborative Backup for Dependable Mobile Applications", 2nd W/S on Middleware for Pervasive and Ad-Hoc Computing, 2004.
- Courtès+, Storage Tradeoffs in a Collaborative Backup Service for Mobile Devices, EDCC'06
- Courtès+, Security Rationale for a Cooperative Backup Service for Mobile Devices, LADC'07
- Courtès+, Dependability Evaluation of Cooperative Backup Strategies for Mobile Devices, PRDC'07
- Courtès, Cooperative Data Backup for Mobile Devices, PhD, University of Toulouse, 2007 <u>http://www.laas.fr/~lcourtes/phd/phd-thesis.fr+en.pdf</u>

Related work

- Loo+, Peer-to-Peer Backup for Personal Area Networks. Intel, Report, 2003
- Fall, A Delay-Tolerant Network Architecture for Challenged Internets., SIGCOMM'03
- Aoshima, "Ubiquitous data backup", European Patent Application 1 788 783 A1, 2007
- Ball+, Dependable and Secure Distributed Storage fo Ad Hoc Networks, ADHOC NOW 2007
- Tan+, Ubistore: Ubiquitous and Opportunistic Backup Architecture, PerComW'07