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@ Mobile devices are subject to damage,
loss, theft...

@ Typical data backup techniques...

e “synchronization” between mobile
device and desktop machine

Q@ ... are constraining or costly
® require access to desktop machine
e potentially costly communication (e.g., GPRS, UMTS)

® |ong distance wireless bandwidth increasing more
slowly than rate of production of data on mobile

devices
= Backup opportunities are rare, data is at risk
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Q@ Key ldeas

® |everage computing device ubiquity

e opportunistic replication to neighboring devices

e free shortrange P2P communication (Wi-Fi, Bluetooth)
@ Salient Points

e adapted to sparsely-connected mobile systems with
intermittent connectivity

= Intermediate backup on neighboring devices
= final backup on reliable Internet store

e continuous backup & replication
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Challenges

@ Backup availability

e participants may fail

e participants may maliciously delete backups
@ Performance and security of intermediate backups

e unpredictable encounters and encounter durations

® scarce resources (storage, energy)

e participants may maliciously read or modify backups
@ Cooperation effectiveness and security

e participants may be selfish

e participants may maliciously sabotage cooperation
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Challenge 1 - Backup Availability

Q Issues
e participants may maliciously delete backups
e participants may falil
= need replicated intermediate backups

@ Optimization goals
e data avallabillity...
e ... and storage efficiency
@ Approach
e devise replication strategies
e evaluate the efficiency/availability tradeoff
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Simple Replication

@ Algorithm
e send a total of n copies of each data item
e send 1 copy per contributor
e recover from any 1 contributor out of n

n=3 : =2

@ Dependability & storage cost analysis
e tolerate f contributor faults = storage cost f + 1
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Erasure Codes

@ Basics
® k-block input — n coded blocks, n > k
e m blocks suffice to recover input data k< m <n
e tolerate n-m faults
e storage cost: S = n/k
@ Optimal erasure codes
e m = k = tolerate n-k faults

e notation: (n,k) code
® n and k are user-defined parameters
® k=1 & simple replication
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Erasure Codes

@ Algorithm
1. (n,k) erasure coding — n coded blocks
2. send 1 coded block per contributor
3. recover from any k contributors out of n

@ Dependability & storage cost analysis
e tolerate f contributor faults = storage cost = 1+f/k
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@ Device failure model @ Device mobility model
e crash failures e stochastic processes
e stochastic process e exponential distributions
e eXxponential distribution = encounters with other
(rate A) devices (rate a)

= connections to Internet

(rate [3)
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Dependability Evaluation

@ Device failure model @ Device mobility model
e crash failures e stochastic processes
e stochastic process e exponential distributions
e exponential distribution = encounters with other
(rate A) devices (rate a)
= connections to Internet
(rate [3)

@ System model
® (n,k) erasure code : up to n fragments sent to contributors
e data safe
= original data or k fragments have reached Internet store
e data lost

= data owner and contributors failed before k fragments
reached Internet store
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Dependability Measurements

@ PL: probability of data loss

e Probability of data owner and contributors failing
before sufficient fragments have reached Internet
store

Q@ LRF: data loss reduction factor

e PL compared to non-cooperative backup
- LRF = PLes / PL

e Non-cooperative backup
- onlyonedevice & a=0

= either fails or connects to the Internet

- PLref=)\/()\+ B)
e,
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LRF vs. basic parameters
(n,k) = (3,2) Data loss probabm
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LRF vs. coding parameters

loss reduction factor (LRF)
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Backup Availability Summary

@ Intermediate backups through cooperation
@ LRF up to connectivity ratio a/f
@ Order of magnitude gain when a/f>10 and B/A>2

@ Erasure codes have small advantage over simple
replication in only a very narrow domain



Related Work

@ FLASHBACK [Loo+ 2003]
e UC Berkeley & Intel Research (USA)

@ UbiStore [Tan+ 2007]
e NICTA & Univ. New South Wales (Australia)

@ Swarm-based replication maintenance [Ball+ 2007]
e Univ. Kent (GB)

@ Ubiquitous Data Backup [Aoshima 2007]
e Hitachi, Ltd. (Japan)

@ Delay- and disruption-tolerant networks [Fall+ 2003]
e |ntel Research (USA) and others



Future Directions

@ Cooperation policies
@ Effect of data-chopping on dependability
@ Rate-less erasure codes

@ Experimental assessment of a and 3 (and A)
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