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• require access to desktop machine

• potentially costly communication (e.g., GPRS, UMTS)

• long distance wireless bandwidth increasing more 
slowly than rate of production of data on mobile 
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⇒ Backup opportunities are rare, data is at risk

Cooperative Backup 
(MoSAIC project)



Cooperative Backup



Key Ideas

• leverage computing device ubiquity

• opportunistic replication to neighboring devices

• free shortrange P2P communication (Wi-Fi, Bluetooth) 

Cooperative Backup



Key Ideas

• leverage computing device ubiquity

• opportunistic replication to neighboring devices

• free shortrange P2P communication (Wi-Fi, Bluetooth) 
Salient Points

• adapted to sparsely-connected mobile systems with 
intermittent connectivity
- intermediate backup on neighboring devices
- final backup on reliable Internet store

• continuous backup & replication

Cooperative Backup
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Challenges

Backup availability

• participants may fail

• participants may maliciously delete backups
Performance and security of intermediate backups

• unpredictable encounters and encounter durations

• scarce resources (storage, energy) 

• participants may maliciously read or modify backups
Cooperation effectiveness and security

• participants may be selfish

• participants may maliciously sabotage cooperation
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Issues

• participants may maliciously delete backups

• participants may fail
☞ need replicated intermediate backups

Optimization goals

• data availability…

• … and storage efficiency
Approach

• devise replication strategies

• evaluate the efficiency/availability tradeoff

Challenge 1 - Backup Availability
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Algorithm

• send a total of n copies of each data item

• send 1 copy per contributor

• recover from any 1 contributor out of n

Simple Replication

Dependability & storage cost analysis

• tolerate f contributor faults ⇒ storage cost f + 1

n = 3, f = 2n=3 ; f=2
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Basics

• k-block input → n coded blocks, n > k

• m blocks suffice to recover input data k ≤ m < n

• tolerate n-m faults

• storage cost: S = n/k
Optimal erasure codes

• m = k ⇒ tolerate n-k faults

• notation: (n,k) code

• n and k are user-defined parameters

• k = 1  ⇔   simple replication

Erasure Codes
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n = 5, k = 3

f = n − k = 2

Algorithm
1. (n,k) erasure coding → n coded blocks
2. send 1 coded block per contributor
3. recover from any k contributors out of n

Erasure Codes

(n,k) = (5,3)
f = n - k = 2

Dependability & storage cost analysis

• tolerate f contributor faults ⇒ storage cost = 1+f/k



Erasure Codes
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• stochastic processes

• exponential distributions
- encounters with other 

devices (rate α)
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Dependability Evaluation
Device failure model
• crash failures

• stochastic process

• exponential distribution 
(rate λ)

Device mobility model
• stochastic processes

• exponential distributions
- encounters with other 

devices (rate α)
- connections to Internet 

(rate β)



Dependability Evaluation

System model
• (n,k) erasure code : up to n fragments sent to contributors

• data safe 
➯ original data or k fragments have reached Internet store

• data lost 
➯ data owner and contributors failed before k fragments 
reached Internet store 

Device failure model
• crash failures

• stochastic process

• exponential distribution 
(rate λ)

Device mobility model
• stochastic processes

• exponential distributions
- encounters with other 

devices (rate α)
- connections to Internet 

(rate β)
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Dependability Measurements
PL: probability of data loss

• Probability of data owner and contributors failing 
before sufficient fragments have reached Internet 
store

LRF: data loss reduction factor

• PL compared to non-cooperative backup 
- LRF = PLref / PL

• Non-cooperative backup
- only one device   ⇔   α = 0 
- either fails or connects to the Internet 
- PLref = λ / (λ + β) 
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LRF vs. coding parameters
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Backup Availability Summary

Intermediate backups through cooperation

LRF up to connectivity ratio α/β

Order of magnitude gain when α/β>10 and β/λ>2

Erasure codes have small advantage over simple 
replication in only a very narrow domain
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Cooperation policies

Effect of data-chopping on dependability

Rate-less erasure codes

Experimental assessment of α and β (and λ)

Future Directions
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