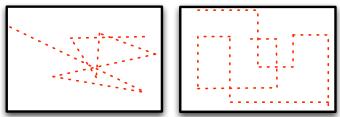
ARUM: an Approach for the Resilience of Ubiquitous Mobile Systems

Marc-Olivier Killijian David Powell Nicolas Rivière Matthieu Roy Gaétan Séverac Christophe Zanon

Workshop Internet of Things - october 21st 2008

Internet of Things

- Ambiant Intelligence,
- Ubiquitous Systems
- So what ?
 - Connecting zillions of nodes
 - Always evolving
 - Disconnections/new services, versioning, etc.
 - Open to new (untested/malicious/...) things
 - Mobile things/objects/devices
 - Tightly integrated into users environment/life
 - Critical as a whole


- Need to increase resilience of AmI/IoT/UbiSys
- Evaluation of such systems is difficult
 - Usability, Acceptance, Performance, Resilience
 - Analytically: need for models, tools, etc.
 - Experimentally: need for platforms, prototypes, benchmarks, metrics, data, applications, etc.
- □ Why is it so difficult ?
 - What are ubiquitous systems ?
 - Scale (#/size devices/environment)
 - What to evaluate ? (user xp, network, etc.)

Evaluation usually based on simulation

- Network simulators (ns/2, glomosim, etc.)
- Simple mobility models
 - Random drunken
 - Manhattan

- Simulation is not satisfactory for critical systems
 - Cavin et al. 2002 : "significant divergence exist between the [different] simulators"
 - Very little work on simulation/fault-injection at node level [Goswami97]
- Mobility models meaningless for most applications

ARUM : emulation & realistic models/ parameters

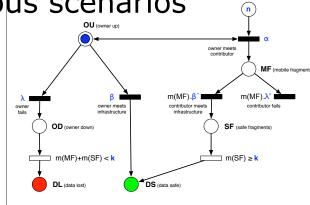
Emulation as a complement to simulation

- Real prototype of a complex software stack
 - Runs on real hardware, i.e. uses real device drivers, communication stacks, etc.
 - Embeds real middleware, real FT mechanisms
 - □ Is a full prototype of the application
- No details can be simplified
- Fault-injection
- Use of real mobility/usage data for
 - Realistic mobility/failure/usage models
 - Realistic analytical evaluation parameters

ARUM : emulation & realistic models/ parameters

Emulation as a complement to simulation

- Real prototype of a complex software stack
 Runs on real hardware, i.e. uses real device drivers, communication stacks, etc.
 mbeds mulationaplation
 Is a full prototype of the application
 No details can be simplified
 Fault-injection
 Use f real mobility/usage data for
 - istic Mobility aimodels models
 - kealistic analytical evaluation parameters



ARUM : Mobility/Fault Models in UbiSys

□ For resilience evaluation in ubiquitous scenarios

- Mobility/Connectivity models
- Fault models
- Energy consumption models
- The ARUM LAAS Project
 - \Box R. Diaz's PhD started september 2008
 - Collect real data on different pops
 - Humans using GPS Smartphones
 - Animals using GPS collars
 - Build realistic models
 - □ for simulation, emulation, prototyping, etc

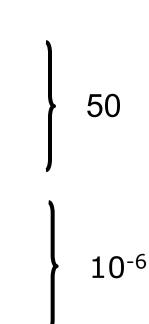
ARUM Emulation Platform - Scale issue

Ubiquitous systems can be very diverse

- VANETs
- Urban social networking
- Nano-robots
- Can we have a unified approach
 - Scale, scale, scale

Typically composed of fixed and mobile devices

- Programmable mobile platform
- Light processing unit
- Wireless comm. interfaces (adhoc+infra)
- Positioning device
- Dedicated laboratory
 - Infrastructure
 - Computing, communication, positioning
 - Reproducible experiments
 - Fault injection


Scalable lab !

 \Box Different prototypes \rightarrow different scales

- Communicating vehicles (VANETs)
 - Device: 3m
 - Environment: 1km road
 - Communication range: 100s m
- Cooperating nano-robots
 - Device: Ø1µm
 - **Environment:** \emptyset **20** μ **m vessel**
 - Communication range: 10s μm
- Scale increase or decrease
 - Factor from 10⁻⁶ to 10²

Distributed BlackBox Example

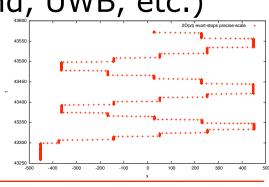
- Exemplifies the emulation platform
 - critical application
 - mobile devices (C2CC)
 - distributed protocol (P2P)
- Collects and saves car/env data
 - Status of dr.wheel/pedals
 - Speed, orientation, position
 - Surrounding vehicles
 - etc.
- Not hardened hardware but distributed algorithm

10

What are the issues to solve

Technical issues

- Precise indoor positioning
- Programmable mobility
- Range-controlled communication



Precise Indoor Positioning

Desired precision

- In-vehicle GPS ≈ 5m
- Scale reduction factor 50
 □ Indoor precision ≈ 10cm
- Several technologies
 - Scene analysis (motion capture)
 - Triangularization (RF, ultra-sound, UWB, etc.)
- Evart positionning system
 - sub-mm precision @ 100 Hz



Programmable Mobility

Reproducible Mobile experiments

- Small robot platforms
 - □ Carry PDA or laptop
 - LynxMotion 4WD
- Different designs
 - Tape tracks
 - 20cm/s for a few hours
 - "Autonomous" version under development
 - Increased programmability/precision/speed
 - Use of LAAS robotic architecture

Programmable Mobility

Reproducible Mobile experiments

- Small robot platforms
 - □ Carry PDA or laptop
 - LynxMotion 4WD
- Different designs
 - Tape tracks
 - 20cm/s for a few hours
 - "Autonomous" version under development
 - Increased programmability/precision/speed
 - Use of LAAS robotic architecture

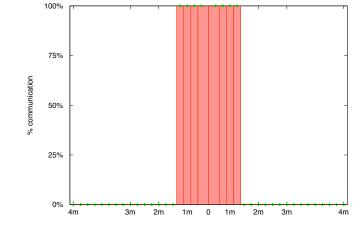
The BIG issue: wireless communication

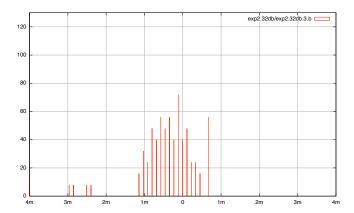
- □ How to scale down WIFI ?

 - Precisely and controlled
- Potential solutions
 - Via emulation
 - Reducing Tx power of adapters
 - Access driver
 - Faraday cages, tents, etc.
 - Signal attenuators



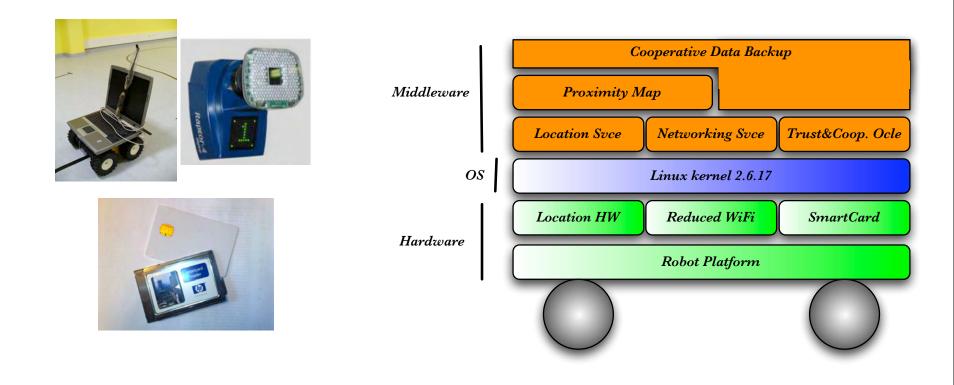
The BIG issue: wireless communication


The BIG issue: wireless communication



Scaled WiFi : Results

exp2.32db



- □ Final experiments
- □ Static and mobile objects
- □ C2C: 1.5m -> 32db

LAAS Hidenets Platform

Scenario

signal 1 = accelerate/decelerate signal 2 = change mode: a-next turn left b-next turn right

go a little faster, when obstacle = go straight forward and crash

Experimental evaluation

- Complete the evaluation prototype
- Extend the mobility aspect
- Develop fault-injection techniques
- Develop benchmarks
- Analytical evaluation and mobility models
 - Develop a data collection platform
 - Extract and anonymize data
 - Synthesize models from data
 - Evaluate models

- Ambiant Intelligence/Ubiquitous/Internet of Things
 - Tremendous need for user trust/confidence
 - Resilience (Dependability + Evolution)
- Evaluation of Resilient UbiMob Systems
 - Large open field
 - Evolvability

Privacy

- ARUM Contribution
 - Analytical evaluation
 - Experimental evaluation

