

Internet of Things

The ADREAM Project

Michel Diaz LAAS-CNRS

Internet of Things Day, LAAS-CNRS, October 21, 2008

Internet of Things, LAAS-CNRS, October 2008

ADREAM

Architectures Dynamiques Reconfigurables pour Systèmes Embarqués Autonomes Mobiles

Reconfigurable and Dynamic Architectures for Mobile Autonomous Embedded Systems

Internet of Things, LAAS-CNRS, October 2008

- Launched in 2004 to prepare the massive interconnection of instrumented and intelligent autonomous sets of artefacts
- Using hierarchies of communicating wireless mobile cooperative sensor-actuator-processor systems: from embedded microsystems to networks of mobile robots
 - Research: communication, cognition, security, etc.
 - Experiments: developing significative trials

- Pervasive and Logical Intelligence, including sensorial and planning functions
- With Multi-level Interpretations and Decisions
- Issues :
 - Interactions, communication and networking
 - Heterogeneity and interoperability
 - Context adaptativity (and evolutivity)
 - Autonomy (for functions and decisions)
 - Energy optimisation
 - Resilience and security
 - Using model driven design (including validation)

TRANSCOM: Communication Systems with dynamique directionnel smart antennas

Aim:

- Networks of communicating Sensors and Objects by optimising the software-hardware interoperability
 - reconfiguring antenna diagrammes
 - Providing basic networ kprotocols
 - Minimising cell interferences and conflicts
- New services
 - Localisation
 - High-Low throughput Reconfigurability on chip
 - Data-control plan Integration
 - Cross-layering

ROSEAU: Mobile and Cooperative Sensors, Robots and Humans Systems

Aim: Mobile Robots in

- Monitoring, exploration, or Surveillance tasks, while deploying the underlaying needed communication system
- Locate and move sensors, actuators and equipments, and maintain the physical infrastructure and all inter-process communication
- Manage the software association, the decision procedures, and the human-robot communication whatever the dynamicity of the tasks

==> then, Communication

- 1- new perceptive function of the robot, with hierarchical and quality constraints coming from the environment
- 2- from high-level applicative primitives and decisions, to varying topologies and connexions
- 3- leads to modifications of the planning in case of problems

- Develop three new platforms
 - Advanced Embedded Systems
 - QoS Networking
 - Design Environment
- To complement the three present platforms
 - Technology and Chip Design
 - Technology Characterisation
 - Robotics

- Proposing, buying and evaluating Methodologies and Design Tools
- Developing new System Architectures
- Start a new Instrumented Building
- The building is specifically being designed as a Strong Support for the trials
 - with sensors
 - with robots
 - parts of the instrumentation mechanisms

Thanks!

Internet of Things, LAAS-CNRS, October 2008