Embedded Systems

Research Challenges and
Work Directions

40-ieme Anniversaire du LAAS
28 mai 2008

Joseph Sifakis
VERIMAG & ARTIST2 NoE



Embedded Systems: Scope

An Embedded System integrates software and hardware jointly and specifically
designed to provide given functionalities, which are often critical.

b
[~ ] i
A Decoor - - : \ ~ 3t
u'pt - “ - —J'.“*»%
) 2]
Do
2 & °
S o
S o
e —— - — - >
= | > = Y
- .
.
A7 ! e
== = i - —
&= =
/
©
@

Magnetic Nails

Sensors, Computers and
Communications Devices



Embedded Systems: Economic Stakes

Embedded Systems are of strategic economic importance

*» Factor for innovation and differentiation:
» new functionalities and services in existing products
» new products and services

¢ Principal source of added value: particularly for embedded software

/

* Increased competitivity
s This is the fastest-growing sector in IT

Europe has leading positions in sectors where embedded technologies are
central to growth

/

s Currently: Industry (avionics, automotive, space, consumer electronics,
telecom devices, energy distribution, rail transport, ...)

+» Anticipated: Services (e-Health, e-Education)

Embedded Technologies are of strategic importance

for modern economies




Embedded Systems: Trends

“ An exploding number of embedded reactive heterogeneous components
In mass-market products

% Massive seamless integration of heterogeneous components in a real-world
environment (conflicts/competition, confidentiality, responsibility)

% Technical and Economic Constraints

» Dependability (safety, security, availability)
Autonomy (no humans in the loop)
Low resource consumption (memory, power, energy)

Physical constraints (weight, size, heat dissipation, ...)

VvV V VYV V

Market positioning (optimal cost/quality, time to market)

Building systems of guaranteed functionality and quality,
at an acceptable cost,
IS a major technological and scientific challenge.




Embedded Systems: The State of the Art

Today, we master — at a high cost :
- Critical control systems
% Automated aircraft landing systems
High reactivity + High Dependability

- Complex “best effort” systems
% mobile telecommunications
Distribution + Good reactivity + Good dependability

Tomorrow, the vision we’re aiming for are
Distributed, Heterogeneous Systems of Systems

- Automated freeways
- Next generation air traffic control

- « Ambient Intelligence »




Air Traffic Control — the Next Generation
Is it ... attainable ?

i Start of the project

22> Air traffic takes another turn

,Lr,\\‘” FAA weighs fixes for automation project
N\ By Gary H. Anthes - April 25th, 1994

The Federal Aviation Administration is considering major changes in its troubled Advanced Automation System
(AAS) project, now billions of dollars over budget and years behind schedule.

FAA administrator David R. Hinson told a congressional panel that the agency might scrap the project
entirely, although he said some scaling back was more likely. The FAA has spent about $1.5 billion to date on
the estimated $6.9 billion air traffic control system.

o The FAA's Course Correction

i g\\\* The Ugly History of Tool Developmentat the FAA
P‘Q‘\\ By David Carr and Edward Cone April 9th, 2002

Online exclusive: The agency wrote off $1.5 billion of its $2.6 billion investment to overhaul the nation’'s air
traffic control computer systems. What went wrong? (Just about everything.)

One participant says, "It may have been the greatest failure in the history of organized work."

Certainly the Federal Aviation Administration's Advanced Automation System (AAS) project dwarfs even the
largest corporate information technology fiascoes in terms of dollars wasted. Kmart's $130 million write-off last
year on its supply chain systems is chump change compared to the AAS. The FAA ultimately declared that
$1.5 billion worth of hardware and software out of the $2.6 billion spent was useless.




The Challenges

Technological Challenge:
Building systems of
guaranteed functionality and quality
(performance and robustness),
at acceptable costs.

This Technological Challenge
hides an underlying Scientific Challenge

Scientific Challenge:

The emergence of Embedded Systems
as a scientific and engineering discipline
enabling system design predictability,

as iIs already the case for the physical sciences.




Proposed Vision

By their nature, Embedded Systems need results and
paradigms from both
Computing Systems and Physical Systems Engineering

We need a new formal foundation for Embedded Systems,
which systematically and even-handedly marries
computation and physicality
performance and robustness

T T

What is being How does the performance
computed? At what cost? change under disturbances?
(change of context; change of
resources; failures; attacks)




The Challenges

Physical Systems Engineering Computing Systems Engineering

Brooklyn Bridge
1883 1983

LSA 20¢

An exception 06 has occured at 0028:C11B3ADC in VXD DiskTSD{03) +
00001660, This was called from 0028:C11B40C8 in ¥xD voltrack(04) +
00000000, It may he possible to continue normally,

* Press any key to attempt to continue,
* Press CTRLHALTHRESET to restart your computer., You will

lose any unsaved information in all applications.

Press any key to continue

Uptime: 125 years

© Thomas Henzinger



The Challenges

Physical Systems
Engineering —
Analytical Models

Differential Equations
Linear Algebra
Probability Theory

Synthesis

Theories of estimation
Theories of robustness

Mature

Computing Systems
Engineering —
Computational Models

Logic
Discrete Structures
Automata Theory

Theories of correctness
Verification

Promising

10



Proposed Vision: Multidisciplinary Integration

Execution

constraints

CPU speed

memory :

bower Computing

failure rates Embedded algorithms
System protocols

_ architectures
Environment

constraints

o

» Performance (deadlines, |jitter,
throughput)

* Robustness (security, safety,
availability)

11



Proposed Vision: Multidisciplinary Integration

Embedded System Design

constraints

CPU speed
power
failure rates

Environ
constraints

Embeddeo

» Performance (deadlines, |jitter,
throughput)

* Robustness (security, safety,
availability)

1S

generalized hardware design

Computing

algorithms
protocols
reuse

12



Proposed Vision: Multidisciplinary Integration

Execution
constraints

CPU speed

Computing

algorithms
protocols
architectures

vironment
constraints

o

Embedded System Design
IS
generalized control design

13



Proposed Vision: Multidisciplinary Integration

Embedded System Design
Execution coherently integrates all these

constraints

Computing

Embedded

algorithms
protocols
architectures

» Performance (deadlines, jitter,
throughput)

 Robustness (security, safety, We need to revisit and revise
availability) the most basic computing
paradigms to include methods
from EE and Control




Sub-challenge 1.
Integrate Analytical and Computational Modeling

Physical Systems Computing Systems
Engineering Engineering

Component model: transfer function Component model: subroutine
Composition: parallel Composition: sequential
Connection: data flow Connection: control flow

- Q=0

15



Sub-challenge 1.
Integrate Analytical and Computational Modeling

Matlab/Simulink

Model \L.IJH

Band-Limited
White Noise H
Input
Generator Seope
—P| xd «
—P| x xo" P In1  Outl xo"
—P|xo 58

discrete controller jitter pendulum




Sub-challenge 1.
Integrate Analytical and Computational Modeling

UML Model ®

(Rational Rose) Abort
Wait_Start

Start(HO_time) / begin
clock.set(298900);
HO.set(HO_time) end

Wait_Igniti

on_Time

timeout(clock) / begin .
lock.set(TimeConstants.MS_100); / clock.set(TimeConstants.M}
current_is_ok:=EVBO.Open() end

[ current_is_ok = false ]/ clock.reset() ’L

[ current_is_ok = true ]

timeout(clock) / current_is_ok:=EVVP

Open_EVB Wait_Clos
0 e EVVP
eout(clock) /
current_is_ok:=EVVP. / clock.set(TimeConstants.MS_10
Opend Stop2
[ current_is_ok = false ] 1

[ current_is_ok = true ]

17



Sub-challenge 1.
Integrate Analytical and Computational Modeling

Analytical Models

Defined by equations
Deterministic or probabilistic

Strengths:

Concurrency

Real time

Quantitative constraints (power,
Qo0S, mean-time-to-failure)

Tool support:

Average-case analysis
Optimization

Continuous mathematics
(differential equations,
stochastic processes)

Main paradigm:

Synthesis

Computational Models

Defined by programs
Executable by abstract machines

Dynamic change

Complexity theory
Nondeterminism (abstraction
hierarchies, partial specifications)

Worst-case analysis
Compilers

Discrete mathematics (logic,
combinatorics)

Verification

18



Sub-challenge 2:

Component-based Engineering

Component-based Design: Build from a given set of components a
system meeting given requirements

Key issues:

 Encompassing Heterogeneity:
We need a unified framework for the meaningful
composition of heterogeneous components

» Achieving Constructivity:
We need architectures and rules for correctness by
construction wrt essential properties

 The two demands for heterogeneity and
constructivity pull in different directions. 19



Sub-Challenge 2:

Encompassing Heterogeneity

Embedded systems are built from components with different characteristics.
We distinguish 3 main sources of heterogeneity:

« Execution: synchronous and asynchronous components

* Interaction: function call, broadcast, rendezvous, monitors

« Abstraction levels: hardware, execution platform, application software

We need a unified composition paradigm for describing and analyzing
the coordination between components.

Such a paradigm would allow system designers
and implementers to formulate their solutions
In terms of tangible, well-founded and organized concepts

instead of using dispersed low-level coordination mechanisms including
semaphores, monitors, message passing, remote call, protocols etc.

20



Sub-challenge 2:
Constructivity - Compositionality

Rules for proving global properties of compound
components from properties of
iIndividual components.

©

Bl -

© © ©
© | © © | ©

22



Sub-challenge 2:
Constructivity - Compositionality

Rules for proving global properties of compound
components from properties of
iIndividual components.

©

We need compositionality results for progress properties
and extra-functional properties

23



Sub-challenge 2:
Constructivity - Composability

Rules guaranteeing that essential properties of individual
components are preserved across compaosition.

©

©
1 © [




Sub-challenge 2:
Constructivity - Composability

Rules guaranteeing that essential properties of individual
components are preserved across compaosition.

S /\©

&l & @

—_—

Property stability phenomena are poorly understood.
We need composability results e.g.
o feature interaction in middleware
e composability of scheduling algorithms
* theory for reconfigurable systems

25



Sub-challenge 3: Adaptive Systems

« Adaptivity is the capacity of a system to meet given requirements
including safety, security, and performance, in the presence of
uncertainty in its external or execution environment.

Adaptivity iIs a means for enforcing predictability in the
presence of uncertainty

« Uncertainty is characterized as the difference between average and
worst-case behavior of a system’s environment. The trend is towards
drastically increasing uncertainty, due to:

» Connectivity with complex, non-deterministic, possibly hostile external
environments

» Execution platforms with sophisticated HW/SW architectures
(layering, caches, speculative execution, ...)

26



Sub-challenge 3: Adaptive Systems - Critical vs. Best effort

 Increasing uncertainty gives rise to 2 diverging approaches and
technologies:

» Critical systems engineering based on worst-case analysis and static
resource reservation e.g. hard real-time approaches, massive redundancy.

» Best effort engineering based on average case analysis
e.g., soft real-time for optimization of speed, memory, bandwidth, power,

» This leads to a physical separation between critical and non critical
parts of a system running on dedicated physical units, which implies
Increasing costs and reduced hardware reliability, e.g.: an increasing
numbers of ECUs in automotive systems.

Challenge: develop holistic adaptive design technigues combining the
advantages of the two approaches: guaranteed satisfaction of critical
properties and efficiency by making best possible use of available
resources (processor, memaory, power).

27



Sub-challenge 3: Adaptive Systems - Architecture

CONTROLLER

Learning
Estimation of parameters

Strategy and decision making
Choosing amongst possible objective

Configuration and Planning
Meeting a given objective

Input ' f state

APPLICATION

28



The central problem: Rigorous System Design

Rigorous system design methods rely on the implicit or
explicit use of a pair (programming model, execution model),
e.g.

e Synchronous languages have reactive execution models

* Real-time languages such as ADA rely on « event driven »
execution ( fixed priorities and preemption)

* Time triggered languages and architectures (TTA, Oasis,
Giotto)

This allows :

* correctness-by-construction for certain essential
properties, the correspondence between programs and their
Implementation is established once and for all

e automatic code generation becomes possible



The central problem: Rigorous System Design

Programming model

with concepts and primitives for
concurrency and resource
management

} Extension of an existing language

Code Generator

Abstract machine encompassing
execution mechanisms needed for
efficient and dependable execution

Execution model

Execution infrastructure



Model-based Development — the idea

Move from physical prototypes to virtual prototypes (models) with obvious
advantages : minimize costs, flexibility, genericity, formal validation is a

possibility

Modeling and validation environments for complex real-time systems

 Libraries of Components
ex. HW, SW, Models of continuous dynamic systems

« Languages and tools for assembling components

Synthesize embedded software from domain-specific models
ex. Matlab, SystemC, UML, SDL.

33



Model-based Development — the principle

Application
SW

Platform
Model

Environment
Model

Implementation

Compiler
Code
| | System
Generation Model

Analysis

User
Requirement

34



Resource-aware Compilation

Architecture Timing
model QoS

Application SW Security

Scheduler

SN Taskl Task?2 Task3 Task4
Handler

35



Operating Systems

Operating systems are often:

* Far more complex than necessary
 Undependable

« With hidden functionality

« Difficult to manage and use efficiently

We should move towards lightweight operating systems, each dedicated to
a particular application domain ex. OSEK, ARINC, JavaCard, TinyOS

* Minimal architectures, reconfigurable, adaptive, with features for safety
and security

» Give up control to the application —
move resource management outside the kernel

» Supply and allow adaptive scheduling policies which take into account
the environmental context (ex: availability of critical resources such as

energy).

36



Control for Embedded Systems

Automation applications are of paramount importance —
their design and implementation raise difficult problems

Hybrid Systems — active research area
« Combination of continuous and discrete control techniques

« Multi-disciplinary integration aspects (control, numerical analysis,
computer science)

 Modeling and Verification

« Distributed and fault-tolerant implementations (influence
communication delays, clock drift, aperiodic sampling)

& Use of control-based techniques for adaptivity

37



Dependability (Security, Safety, Availability ... )

« Traditional techniques based on massive redundancy are of limited value

« Dependability should be a guiding concern from the very start of system
development. This applies to programming style, traceability, validation
techniques, fault-tolerance mechanisms, ...

Work Directions :

* Methodologies for domain-specific standards, such as :
- DO178B Process Control Software Safety Certification
- Integrated Modular Avionics; Autosar
- Common Criteria for Information Technology Security Evaluation

 Verification Technology (verify resistance to certain classes of errors and attacks) —
certification

» Architectures, protocols and algorithms for fault-tolerance and security taking into
account QoS requirements (real-time, availbability)

38



Networked Embedded Systems : Wireless Sensor Networks

Nodes

e sensors + actuators + CPU+ Memory (~100 KB) + radio

Technical characteristics

* Real-time

e Scarce power

« Dynamically changing resources

» Self-organization, adaptive aggregate behavior is important

Applications
« Military: surveillance and warfare
* Monitoring : environmental, biological, medical

e Smart environments, ubiquitous computing

39



Wireless Sensor Networks




Networked Embedded Systems : Wireless Sensor Networks

Adaptive real-time behavior

Inherently dynamic, must adapt to accommodate workload changes and to
counter uncertainties in the system and its environment

» Clock synchronization, parameter settings

« Specific routing algorithms

* Location discovery, neighbor discovery

« Group management (dormant, active-role assignment)

» Self-organization : Backbone creation, leader election, collaboration to
provide a service

Power management :
 turn-off of dormant nodes
» periodical rotation of active nodes to balance energy

41



Integration of Methods and Tools

SY/SIemie VIaIXAS
VIEOPOIIS Viatia/SImulink
Vietalrd  [aplae.
Al=Java
Java
Jini

ARINC Rravenscar JavaCard Symbian  [inyOS

VXWOorks POSIX R [-Linux

UGCORIGIIER o SIC; F=GAL . SeC NG

42



Conclusion

— — r rr v r
Drnecnmorals N e PP (:'[("C me A A a 11Inialie onno s .,-:/ - ~ _;_-J ~rr
o =D v —_ < s e _“J — - — - - <. 4 44— < <4 4 v 3 - v - j @ |
'K e - e adondbh i 'H ==
-~ P IT<Yal1a -~ —— o rere Nalalalials — A e -~ ~ Jlal= NaWal al= Y aYa =
J// JleDlsl - C J/ j - S JULCLLIU C v - J/: -2 J/ - v C - ja
PR | Aot prme e e ST o e o Ao ff‘""f‘r""f"‘" 4 ~rofe A~ e At A
- — - — ~ — — — — — - = aYa — -
— 404 - L - - - s - - - - <04 - 4 <4 (4. - - - - j - - j - . - < -

Equcation: In order to adequately train new generations of engineers
and researchers, institutions need to focus on embedded systems

as a scientific discipline ana as a specialization area within existing
curricula. This requires taking aown the cultural wall that exists between
many Computer Science ana Electrical Engineering aepartments.

Industry: Industry tends to stay with available technologies, optimizing
existing investments and competencies. Nonetheless, the inherent
limits of ad-hoc approaches to manage system complexity, and the
resulting explosion in costs, provide strong incentives for industry to look
for alternatives. It is important to seize this opportunity and develop new
technologies through joint academic-industrial pilot projects.

43



MERCI



