
1

Embedded SystemsEmbedded Systems

ResearchResearch Challenges Challenges andand

WorkWork Directions Directions

40-ième Anniversaire du LAAS40-ième Anniversaire du LAAS

28 mai 200828 mai 2008

Joseph Sifakis

VERIMAG & ARTIST2 NoE

2

Embedded SystemsEmbedded Systems: Scope: Scope

An Embedded System integrates software and hardware jointly and specifically

designed to provide given functionalities, which are often critical.

3

Embedded Technologies are of strategic importanceEmbedded Technologies are of strategic importance

for modern economiesfor modern economies

Embedded Systems: Economic StakesEmbedded Systems: Economic Stakes

Embedded Systems are of strategic economic importance

Factor for innovation and differentiation:

new functionalities and services in existing products

new products and services

Principal source of added value: particularly for embedded software

Increased competitivity

This is the fastest-growing sector in IT

Europe has leading positions in sectors where embedded technologies are

central to growth

Currently: Industry (avionics, automotive, space, consumer electronics,

telecom devices, energy distribution, rail transport, …)

Anticipated: Services (e-Health, e-Education)

4

Embedded Systems: TrendsEmbedded Systems: Trends

An exploding number of embedded reactive heterogeneous components

in mass-market products

Massive seamless integration of heterogeneous components in a real-world

environment (conflicts/competition, confidentiality, responsibility)

Technical and Economic Constraints

Dependability (safety, security, availability)

Autonomy (no humans in the loop)

Low resource consumption (memory, power, energy)

Physical constraints (weight, size, heat dissipation, …)

Market positioning (optimal cost/quality, time to market)

Building systems of guaranteed functionality and quality,

at an acceptable cost,

is a major technological and scientific challenge.

5

Today, we master – at a high cost :

- Complex “best effort” systems

 mobile telecommunications

Distribution + Good reactivity + Good dependability

Embedded SystemsEmbedded Systems: The State of the Art: The State of the Art

- Critical control systems

 Automated aircraft landing systems

High reactivity + High Dependability

Tomorrow, the vision we’re aiming for are

Distributed, Heterogeneous Systems of Systems

- Automated freeways

- Next generation air traffic control

- « Ambient Intelligence »

6

Air Traffic Control Air Traffic Control –– the Next Generation the Next Generation

Is it Is it …… attainable ? attainable ?

7

The ChallengesThe Challenges

Technological Challenge:Technological Challenge:

Building systems ofBuilding systems of

guaranteed functionality and qualityguaranteed functionality and quality

(performance and robustness),(performance and robustness),

at acceptable costs.at acceptable costs.

This This Technological ChallengeTechnological Challenge

hides an underlying hides an underlying Scientific ChallengeScientific Challenge

Scientific Challenge:Scientific Challenge:

The emergence of Embedded SystemsThe emergence of Embedded Systems

as a as a scientific and engineering disciplinescientific and engineering discipline

enabling enabling system design predictabilitysystem design predictability,,

as is already the case for the physical sciencesas is already the case for the physical sciences..

8

Proposed VisionProposed Vision

By their nature, Embedded Systems need results and

paradigms from both

 Computing Systems and Physical Systems Engineering

We need a new formal foundation for Embedded Systems,

which systematically and even-handedly marries

computation and physicality

performance and robustness.

What is being

computed? At what cost?

How does the performance

change under disturbances?

(change of context; change of

resources; failures; attacks)

9

Uptime: 125 years

TheThe ChallengesChallenges

Physical Systems Engineering Computing Systems Engineering

© Thomas Henzinger

10

Physical Systems

Engineering –

Analytical Models

Differential Equations

Linear Algebra

Probability Theory

Synthesis

Theories of estimation

Theories of robustness

Mature

Computing Systems

Engineering –

Computational Models

Logic

Discrete Structures

Automata Theory

Theories of correctness

Verification

Promising

The ChallengesThe Challenges

11

Embedded

System

Execution

constraints

CPU speed

memory

power

failure rates

Environment

constraints

• Performance (deadlines, jitter,

throughput)

• Robustness (security, safety,

availability)

Computing

algorithms

protocols

architectures

Proposed Vision: Multidisciplinary IntegrationProposed Vision: Multidisciplinary Integration

12

Embedded

System

Execution

constraints

CPU speed

power

failure rates Computing

algorithms

protocols

reuse

Embedded System Design

is

generalized hardware design

Proposed Vision: Multidisciplinary IntegrationProposed Vision: Multidisciplinary Integration

Environment

constraints

• Performance (deadlines, jitter,

throughput)

• Robustness (security, safety,

availability)

13

Embedded

System

Execution

constraints

CPU speed

power

failure rates Computing

algorithms

protocols

architectures

Embedded System Design

is

generalized control design

Proposed Vision: Multidisciplinary IntegrationProposed Vision: Multidisciplinary Integration

Environment

constraints

• Performance (deadlines, jitter,

throughput)

• Robustness (security, safety,

availability)

14

Embedded

System

Execution

constraints

CPU speed

power

failure rates Computing

algorithms

protocols

architectures

Embedded System Design

coherently integrates all these

We need to revisit and revise

the most basic computing

paradigms to include methods

from EE and Control

Proposed Vision: Multidisciplinary IntegrationProposed Vision: Multidisciplinary Integration

Environment

constraints

• Performance (deadlines, jitter,

throughput)

• Robustness (security, safety,

availability)

15

Sub-challenge 1:Sub-challenge 1:
Integrate Analytical and Computational ModelingIntegrate Analytical and Computational Modeling

Physical Systems

Engineering

Component model: transfer function

Composition: parallel

Connection: data flow

Computing Systems

Engineering

Component model: subroutine

Composition: sequential

Connection: control flow

16

Matlab/Simulink

Model

Sub-challenge 1:Sub-challenge 1:
Integrate Analytical and Computational ModelingIntegrate Analytical and Computational Modeling

17

UML Model
(Rational Rose)

Sub-challenge 1:Sub-challenge 1:
Integrate Analytical and Computational ModelingIntegrate Analytical and Computational Modeling

18

Analytical Models

Defined by equations
Deterministic or probabilistic

 Strengths:

Concurrency
Real time
Quantitative constraints (power,
QoS, mean-time-to-failure)

 Tool support:

Average-case analysis
Optimization
Continuous mathematics
(differential equations,
stochastic processes)

 Main paradigm:

Synthesis

Computational Models

Defined by programs
Executable by abstract machines

Dynamic change
Complexity theory
Nondeterminism (abstraction
hierarchies, partial specifications)

Worst-case analysis
Compilers
Discrete mathematics (logic,
combinatorics)

Verification

Sub-challenge 1:Sub-challenge 1:
Integrate Analytical and Computational ModelingIntegrate Analytical and Computational Modeling

19

Component-based DesignComponent-based Design: Build from a given set of components a : Build from a given set of components a

 system meeting given requirements system meeting given requirements

Sub-challenge 2:Sub-challenge 2:
Component-based EngineeringComponent-based Engineering

Key issuesKey issues::

•• Encompassing Encompassing HeterogeneityHeterogeneity::

We need a unified framework for the meaningfulWe need a unified framework for the meaningful

compositioncomposition of heterogeneous components of heterogeneous components

•• Achieving Achieving ConstructivityConstructivity::
We need We need architecturesarchitectures and and rules rules for correctness byfor correctness by

construction wrt essential propertiesconstruction wrt essential properties

•• The two demands for The two demands for heterogeneityheterogeneity and and

constructivityconstructivity pull in different directions. pull in different directions.

20

Embedded systems are built from components with different characteristics.

We distinguish 3 main sources of heterogeneity:

• Execution: synchronous and asynchronous components

• Interaction: function call, broadcast, rendezvous, monitors

• Abstraction levels: hardware, execution platform, application software

Sub-Challenge 2:Sub-Challenge 2:
Encompassing HeterogeneityEncompassing Heterogeneity

We need a unified composition paradigm for describing and analyzing

the coordination between components.

Such a paradigm would allow system designers

and implementers to formulate their solutions

in terms of tangible, well-founded and organized concepts

instead of using dispersed low-level coordination mechanisms including

semaphores, monitors, message passing, remote call, protocols etc.

22

Rules for proving global properties of compound

components from properties of

individual components.

Sub-challenge 2:Sub-challenge 2:
 Constructivity Constructivity - Compositionality- Compositionality

23

Rules for proving global properties of compound

components from properties of

individual components.

We need compositionality results for progress properties

and extra-functional properties

Sub-challenge 2:Sub-challenge 2:
 Constructivity Constructivity - Compositionality- Compositionality

24

Sub-challenge 2:Sub-challenge 2:
Constructivity Constructivity - - ComposabilityComposability

Rules guaranteeing that essential properties of individual

components are preserved across composition.

25

Sub-challenge 2:Sub-challenge 2:
Constructivity Constructivity - - ComposabilityComposability

Rules guaranteeing that essential properties of individual

components are preserved across composition.

Property stability phenomena are poorly understood.

We need composability results e.g.

• feature interaction in middleware

• composability of scheduling algorithms

• theory for reconfigurable systems

26

•• Adaptivity Adaptivity is the capacity of a system to meet given requirementsis the capacity of a system to meet given requirements

including safety, security, and performance, in the presence ofincluding safety, security, and performance, in the presence of

uncertainty in its external or execution environment.uncertainty in its external or execution environment.

Adaptivity Adaptivity is a means for enforcing predictability in theis a means for enforcing predictability in the

presence of uncertaintypresence of uncertainty

•• Uncertainty is characterized as the difference between average andUncertainty is characterized as the difference between average and

worst-case behavior of a systemworst-case behavior of a system’’s environment. The trend is towardss environment. The trend is towards

drastically increasing uncertainty, due to:drastically increasing uncertainty, due to:

Connectivity with complex, non-deterministic, possibly hostile externalConnectivity with complex, non-deterministic, possibly hostile external

environmentsenvironments

Execution platforms with sophisticated HW/SW architecturesExecution platforms with sophisticated HW/SW architectures

(layering, caches, speculative execution, (layering, caches, speculative execution, ……))

Sub-challenge 3: Adaptive SystemsSub-challenge 3: Adaptive Systems

27

•• Increasing uncertainty gives rise to 2 diverging approaches andIncreasing uncertainty gives rise to 2 diverging approaches and

technologies:technologies:

Critical systems engineeringCritical systems engineering based on worst-case analysis and static based on worst-case analysis and static

resource reservation e.g. hard real-time approaches, massive redundancy.resource reservation e.g. hard real-time approaches, massive redundancy.

Best effort engineering Best effort engineering based on average case analysisbased on average case analysis

e.g., soft real-time for optimization of speed, memory, bandwidth, power,e.g., soft real-time for optimization of speed, memory, bandwidth, power,

•• This leads to a physical separation between critical and non criticalThis leads to a physical separation between critical and non critical

parts of a system running on dedicated physical units, which impliesparts of a system running on dedicated physical units, which implies

increasing costs and reduced hardware reliability, e.g.: an increasingincreasing costs and reduced hardware reliability, e.g.: an increasing

numbers of numbers of ECUs ECUs in automotive systems.in automotive systems.

Challenge: develop holistic adaptive design techniques combining theChallenge: develop holistic adaptive design techniques combining the

advantages of the two approaches: guaranteed satisfaction of criticaladvantages of the two approaches: guaranteed satisfaction of critical

properties and efficiency by making best possible use of availableproperties and efficiency by making best possible use of available

resources (processor, memory, power).resources (processor, memory, power).

Sub-challenge 3: Adaptive Systems - Critical vs. Best effortSub-challenge 3: Adaptive Systems - Critical vs. Best effort

28

Sub-challenge 3: Adaptive Systems - ArchitectureSub-challenge 3: Adaptive Systems - Architecture

Learning
Estimation of parameters

Strategy and decision making
Choosing amongst possible objective

APPLICATION

Configuration and Planning
Meeting a given objective

CONTROLLER

input state

ThThe central problem: Rigorous System Designe central problem: Rigorous System Design

Rigorous system design methods rely on the implicit or

explicit use of a pair (programming model, execution model),

e.g.

• Synchronous languages have reactive execution models

• Real-time languages such as ADA rely on « event driven »

execution (fixed priorities and preemption)

• Time triggered languages and architectures (TTA, Oasis,

Giotto)

This allows :

• correctness-by-construction for certain essential

properties, the correspondence between programs and their

implementation is established once and for all

• automatic code generation becomes possible

ThThe central problem: Rigorous System Designe central problem: Rigorous System Design

Extension of an existing language

with concepts and primitives for

concurrency and resource

management

Programming model

Execution model

Execution infrastructure

Code Generator

Abstract machine encompassing

execution mechanisms needed for

efficient and dependable execution

33

Model-based Development Model-based Development –– the idea the idea

Move from physical prototypes to virtual prototypes (models) with obvious
advantages : minimize costs, flexibility, genericity, formal validation is a
possibility

Validation Tools

Modeling Environment

Modeling and validation environments for complex real-time systems

• Libraries of Components

ex. HW, SW, Models of continuous dynamic systems

• Languages and tools for assembling components

Synthesize embedded software from domain-specific models

ex. Matlab, SystemC, UML, SDL.

34

 Compiler

Model-based Development Model-based Development –– the principle the principle

User

Requirement

System

Model

Code

Generation

Implementation

Analysis

Environment

Model

Application

SW

Diagnostics

Platform

Model

35

Compiler

Resource-aware CompilationResource-aware Compilation

Compiler

Task1 Task2 Task3 Task4
Event

Handler

Synchronization and resource management

Compiler

Security

Scheduler

Platform

Timing

QoS

Architecture

model
Application SW

36

• Minimal architectures, reconfigurable, adaptive, with features for safety

and security

• Give up control to the application –

move resource management outside the kernel

• Supply and allow adaptive scheduling policies which take into account

the environmental context (ex: availability of critical resources such as

energy).

Operating SystemsOperating Systems

Operating systems are often:

• Far more complex than necessary

• Undependable

• With hidden functionality

• Difficult to manage and use efficiently

We should move towards lightweight operating systems, each dedicated to

a particular application domain ex. OSEK, ARINC, JavaCard, TinyOS

37

Control for Control for Embedded SystemsEmbedded Systems

Automation applications are of paramount importance –

their design and implementation raise difficult problems

Hybrid Systems – active research area

• Combination of continuous and discrete control techniques

• Multi-disciplinary integration aspects (control, numerical analysis,

computer science)

• Modeling and Verification

• Distributed and fault-tolerant implementations (influence

communication delays, clock drift, aperiodic sampling)

Use of control-based techniques for adaptivity

38

Dependability Dependability ((SecuritySecurity, , SafetySafety, , Availability Availability ……))

Work Directions :

• Methodologies for domain-specific standards, such as :

- DO178B Process Control Software Safety Certification

- Integrated Modular Avionics; Autosar

- Common Criteria for Information Technology Security Evaluation

• Verification Technology (verify resistance to certain classes of errors and attacks) –

certification

• Architectures, protocols and algorithms for fault-tolerance and security taking into

account QoS requirements (real-time, availbability)

• Traditional techniques based on massive redundancy are of limited value

• Dependability should be a guiding concern from the very start of system

development. This applies to programming style, traceability, validation

techniques, fault-tolerance mechanisms, ...

39

Networked Embedded Systems Networked Embedded Systems : : Wireless Sensor Wireless Sensor NetworksNetworks

Nodes

• sensors + actuators + CPU+ Memory (~100 KB) + radio

Technical characteristics

• Real-time

• Scarce power

• Dynamically changing resources

• Self-organization, adaptive aggregate behavior is important

Applications

• Military: surveillance and warfare

• Monitoring : environmental, biological, medical

• Smart environments, ubiquitous computing

1. An unmanned plane (UAV) deploys motes

2. Motes establish an sensor network

with power management

3.Sensor network detects

vehicles and wakes up

the sensor nodes

Zzz...

Wireless Sensor Wireless Sensor NetworksNetworks

Sentry

41

Networked Embedded Systems Networked Embedded Systems : : Wireless Sensor Wireless Sensor NetworksNetworks

Adaptive real-time behavior

Inherently dynamic, must adapt to accommodate workload changes and to

counter uncertainties in the system and its environment

• Clock synchronization, parameter settings

• Specific routing algorithms

• Location discovery, neighbor discovery

• Group management (dormant, active-role assignment)

• Self-organization : Backbone creation, leader election, collaboration to

provide a service

Power management :

• turn-off of dormant nodes

• periodical rotation of active nodes to balance energy

42

Integration Integration of of Methods and ToolsMethods and Tools

SystemC SystemC Matrix-XMatrix-X UML UML
MetropolisMetropolis MatlabMatlab//SimulinkSimulink SDL SDL

 MetaHMetaH Rapide Rapide

VHDL VHDL Lustre-EsterelLustre-Esterel ADA ADA RT-JavaRT-Java

OSEK ARINC OSEK ARINC RavenscarRavenscar JavaCardJavaCard SymbianSymbian TinyOSTinyOS

μμcontrollercontroller DSP RISC FPGA DSP RISC FPGA SoCSoC NoCNoC

 .NET .NET JiniJini

CorbaCorbaTTP CAN TTP CAN SafeBusSafeBus BluetoothBluetooth WiFiWiFi

 VxWorksVxWorks POSIX POSIX RT-LinuxRT-Linux

 C C++ C# Java C C++ C# Java

HW

OS

NW

MW

PR

MO

43

ConclusionConclusion

Research: Embedded Systems offer a unique opportunity for creating a

new discipline marrying computation and physicality. The challenge

spans the spectrum from theoretical foundations to engineering practice.

Research: Embedded Systems offer a unique opportunity for creating a

new discipline marrying computation and physicality. The challenge

spans the spectrum from theoretical foundations to engineering practice.

Education: In order to adequately train new generations of engineers

and researchers, institutions need to focus on embedded systems

as a scientific discipline and as a specialization area within existing

curricula. This requires taking down the cultural wall that exists between

many Computer Science and Electrical Engineering departments.

Research: Embedded Systems offer a unique opportunity for creating a

new discipline marrying computation and physicality. The challenge

spans the spectrum from theoretical foundations to engineering practice.

Education: In order to adequately train new generations of engineers

and researchers, institutions need to focus on embedded systems

as a scientific discipline and as a specialization area within existing

curricula. This requires taking down the cultural wall that exists between

many Computer Science and Electrical Engineering departments.

Industry: Industry tends to stay with available technologies, optimizing

existing investments and competencies. Nonetheless, the inherent

limits of ad-hoc approaches to manage system complexity, and the

resulting explosion in costs, provide strong incentives for industry to look

for alternatives. It is important to seize this opportunity and develop new

technologies through joint academic-industrial pilot projects.

44

