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Dimensions of System Validation

The system

System modelsModel-based 

Validation of models 
against system
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Single Source Annotated Architecture Model

Predictive Analysis 
Across Engineering Dimensions

Security
Intrusion
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Confidentiality

Availability 
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MTBF

FMEA

Hazard 
analysis
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Real-time
Performance

Execution time/
Deadline 

Deadlock/starvation

Latency

Resource
Consumption

Bandwidth

CPU time

Power 
consumption

Data precision/
accuracy

Temporal 
correctness

Confidence

Data 
Quality

Low incremental cost for 
additional analyses & 

simulations

Fewer independently 
developed models 

reduces model validation



Architecture-Driven Modeling

Automatically derived

analytical models
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Annotated architecture

System generation 

from validated models Validation of generators



AADL and Safety-Criticality

Fault management

• Architecture patterns in AADL

— Redundancy, health monitoring, …

• Fault tolerant configurations & modes

Dependability

• Error Model Annex

• Specification of fault occurrence and fault propagation information
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• Use for hazard and fault effect modeling

• Reliability  & fault tree analysis

Behavior validation

• Behavior Annex

• Model checking

• Source code validation
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Traditional Embedded System Engineering

System Engineer Control Engineer

System

Under 

Control

Control

System
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Software-Intensive Embedded Systems
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Mismatched Assumptions

System Engineer Control Engineer
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Predictable Embedded System Engineering

Document the 
Runtime 

Architecture
Navigation

System

Airbag
DeploymentParking 

Assistance

Emission
Management

Cruise
Control

Antilock
Braking
System

Electronic
Fuel

Injection

System Analysis

• Schedulability

• Performance

• Reliability

• Fault Tolerance

• Dynamic Configurability
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Execution 
Platform

. . . . . . . . . . 

Abstract, but 
Precise

Application 
Software

System Construction

• AADL Runtime System 

• Application Software
Integration

External
Environment



Working Together

Conceptual architecture

• UML-based component model 

• Architecture views (DoDAF, IEEE1471)

• Platform independent model (PIM)

System engineering

• SysML as standardized UML profile

• Focus on system architecture and operational environment
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Embedded software system engineering

• SAE AADL

• OMG MARTE profile based on AADL

• AADL as MARTE sub-profile

• Non-functional properties require deployment on platform

Data modeling

• UML, ASN,, …
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Impact of Sampling Latency Jitter

Impact of Scheduler Choice on Controller Stability

• A. Cervin, Lund U., CCACSD 2006

Sampling jitter due execution time jitter and 
application-driven send/receive 
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Latency Contributors

System Engineer Control Engineer

System

Under 

Control

Control

System

Operational

Environment
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• Processing latency

• Sampling latency

• Physical signal latency



ARINC 653 Partitions & Communication

Frame-delayed inter-partition communication

Timing semantics are insensitive to partition 
order

Partition A Partition B
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Latency Impact of Partitions

Display 
Manager

Sensor Request for new page

New page content

Latency contribution:
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Flight
Manager

Flight
Director

Page Content
Manager

Partition period per 
partition hop

Flow spec latency

Lower bound on 
worst-case latency



Intended Data Flow in Task Architecture
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Frame-level Latency Jitter of Data Stream

Example: Non-deterministic downsampling

• Desired sampling pattern 2X: n, n+2, n+4  (2,2,2,…)

• Worst-case sampling pattern: n, n+1, n+4 (1,3,…)

NavSensor 
Processing

Integrated 
Navigation

20Hz 10Hz
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Timeline

Thread NavSensorProcessing

Thread IntegratedNavigation

Processing Navigation

Write

Read



Managed Latency Jitter through Deterministic 
Sampling

Navigation 
Sensor 

Processing

Integrated 
Navigation Guidance 

Processing

20Hz

10Hz 20Hz

From 
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To 
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data
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Processing

Flight Plan
Processing

Aircraft 
Performance 
Calculation

5Hz

2Hz

Fuel Flow

FP data

Performance 

data

data

Nav data

FP data

Immediate and delayed 
data port connections for 

deterministic sampling

Input-compute-output (ICO)  
AADL thread semantics



Rate Group Optimization

Logical threads to execute at a specific rate

Multiple logical threads to execute with the same rate

Placement of units with same rate in same operating 

system thread

Reduced number of threads and context switches
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Reduced number of threads and context switches



Rate Group Order Can Affect Latency

Data flow from sensor Ts to control Tc to actuator Ta with mid-

frame communication

Effect of rate groups: Tc to Ta becomes delayed

Occurs when pairwise immediate connections in opposite 

direction
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t0 t50 t100

Ts Ta

Tc

OST 50ms

OST 100ms

Ts Ta

Ts

Ta

OS Thread 50ms

Tc

OS Thread 100ms



Software-Based Latency Contributors

Execution time variation: algorithm, use of cache

Processor speed

Resource contention

Preemption

Legacy & shared variable communication
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Legacy & shared variable communication

Rate group optimization

Protocol specific communication delay

Partitioned architecture

Migration of functionality

Fault tolerance strategy



Latency and Age of Data

Latency: the amount of time between a sensor reading and an output 
to an actuator based on the sensor reading

Age: amount of time that has passed since the sensor reading

Age Contributors

• Oversampling
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• Missing sensor readings

• Failed processing

• Missed deadlines
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Efficient Runtime System Generation

Navigation 
Sensor 

Processing

Integrated 
Navigation Guidance 

Processing
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Partitions

To 
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Nav

sensor 

data
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data

Nav

dataNav sensor 

Periodic I/O

20Hz

Preserve timing 
semantics of execution 

and communication
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Processing

Flight Plan
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Performance 
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data
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Will This Implementation Work?

Navigation 
Sensor 

Processing

Integrated 
Navigation
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Variable
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Overlapping Message Lifespan

Periodic thread MP and MC

MP ->> MC

Need for double buffering

and timely transfer
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MPi
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Optimization of General Port Buffer Model

MPj

Producer

Send

Xfer

MPk

Consumer/Producer

MCj

Receive Send

Consumer

MCk

Xfer

Receive
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MSj MRj

Xfer

MSk MRk

Xfer

MP: producer copy

MS: send copy

MR: receive copy

MC: consumer copy

• Send/receive with or without copy

• Transfer with or without copy

• Processing with or without copy



Message Streaming Lifespan Framework

MSi

MPi
Producer task

Send

Xfer

MPi+1

Send buffer MSi+1

TP, Mi+1
DP, Mi+1

SMi

XMi

B E
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MRi

Xfer

MCi

Receive

Consumer task MCi+1

MRi+1Receive buffer

TC, Mi
DC, Mi

RMi

XMi

TX



Message Lifespan Properties

MC input-compute-output guarantee

TC, Mi
≤ RMi

= BMCi
≤ EMCi

≤≤≤≤ TC, Mi+1
≤ Rmi+1

Message operation ordering condition

SMi
< XMi

< RMi

MP bounded by producer dispatches
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MP bounded by producer dispatches

TP, Mi
≤ BMPi

≤ EMPi
= SMi

≤ TP, Mi+1 

MS bounded by sends and transfer

SMi
= BMSi

≤ X*
Mi 

≤ EMSi
< SMi+1 

MR bounded by transfers and receive

X**
Mi 

≤ BMRi
≤ EMRi

= R***
Mi 

< XMi+1 * Completion of transfer

** Start of transfer

*** Latest of multiple receivers



Sequential Execution of Periodic Tasks 

(τ P  ; τ C )*

Collapse to single buffer

MPi MPi+1
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MS

MR

MCi

MS

MR
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Application-based Send and Receive (ASR)

MP

MR

αP ΩPS&X

TP ≤ αP ≤ S ≤ ΩP ≤ DP

(ττττ P  | ττττ C )*

3 buffers for ICO
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MR

MC

αC ΩCR

ααααP - ΩΩΩΩP ∩∩∩∩ ααααC - ΩΩΩΩC  ≠≠≠≠ ∅∅∅∅ ⇒⇒⇒⇒ non-deterministic S/R order

TC ≤ αC ≤ R ≤ ΩC≤ DC

α : actual execution start time

Ω : actual completion time



Dispatch-based Send and Receive (DSR)

MP

MR

αP ΩPS&X
TP ≤ αP ≤ S ≤ ΩP ≤ DP

DP ≤ R ≤ TC

(ττττ P  | ττττ C )*

2 buffers for ICO
MP
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MR

MC

R

ααααP - ΩΩΩΩP ∩∩∩∩ DP - TC  = ∅∅∅∅ ⇒⇒⇒⇒ deterministic S/R

α : actual execution start time

Ω : actual completion time

MC



Buffer Optimization Considerations 

Send and receive execution

• As part of application (ASR)

• As part of task dispatch/completion (DSR)

Task execution order

• Concurrent:  τ | τ

Periodic & aperiodic task dispatch
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• Concurrent:  τC | τP

• Atomic non-deterministic:  τC ≠ τP

• Ordered:  τC ; τP or τP ; τC

Message transfer

• Immediate to consumer (IMT)

• Direct to delayed consumer (DMT)

• Period-delayed to consumer (PMT)



Periodic Task Communication Summary

Periodic 
Same period

ASR
IMT | PMT

DSR
IMT | PMT

DMT

τP ; τC
MF:1B PD:2B

S∨X∨R

PD:2B

R

PD:2B

S∨X/R

MF:1B

τC ; τP
PD:1B PD:1B PD:1B PD:1B PD:1B

τ ≠ τ ND:1B PD:2B PD:2B PD:2B ND:1B
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τP ≠ τC
ND:1B PD:2B

X

PD:2B

R

PD:2B

X/R

ND:1B

τP | τC
ND:3B

S/XC

RC

PD:2B

X

PD:2B

R

PD:2B

X/R

NDI:2B

S/X/RC

1B: Single buffer

2B: Two buffers

3B: Three buffers

4B: Four buffers

S, X, R : data copy

S/X : IMT combined send/xfer

S/X/R : DMT combined  S, X, R 

X/R: DSR/PMT combined X, R

o1∨∨∨∨o2 : One operation copy 

MF: Mid-Frame 

PD: Period Delay 

ND: Non-Deterministic

NDI: No Data Integrity
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Predictable Model-based Engineering

Reduce the risks 

• Analyze system early and throughout life cycle

• Understand system wide impact

• Validate assumptions across system

Increase the confidence

• Validate models to complement integration testing
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• Validate models to complement integration testing

• Validate model assumptions in operational system

• Evolve system models in increasing fidelity

Reduce the cost

• Fewer system integration problems

• Fewer validation steps through use of validated generators



Software

System

Design

System

Test

Acceptance 

Test

Requirements

Engineering

Traditional Development Model
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Software

System

Design

System

Test

Acceptance 

Test

Top-Level 

Verification Items

High-level

AADL Model 

Detailed

Low fidelity

Adequate confidence

High fidelity

Strong confidence

Requirements

Engineering

Virtual System Integration

Benefits of Predictive Architecting
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Software

Architectural

Design

Component

Software

Design

Code

Development

Unit

Test

Integration 

Test

Detailed

AADL Model

Specify Model-

Code Interfaces

→ generation of test cases

← updating models with actual data
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