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Jaquet-Droz’s Automata, 1773

The Drawer



Jaquet-Droz’s Automata, 1773

The Invention of “A Little Mechanical Family”

The Drawer - The Musician - The Writer



Jaquet-Droz’s Automata, 1773

The Musician



Jaquet-Droz’s Automata, 1773

The Writer

A Mechanical Computer









Service & Assistance




Surgical Environment



Robotically Aided Surgery



..In human interaction

)

- digital actors

* virtual worlds

* synthetic movies
 simulated environments
* social interaction







.. In the human environment



The Challenge

Sensing and Perception
real-time, unstructured world

Planning and Control
many degrees of freedom
human-like skills, learning

Human-Robot Interaction
cognitive and physical

Mechanisms and Actuation
Safety & Performance

Interactivity & Human-Friendly



Safety



Human-Friendly Robots

Requirements
= Safety

= Performance

Competing?




Technologies

Heavy structure
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Conventional Vi
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Actuation Requirements

Assumed Torque Requirements
Torque Vs Frequency: Square Wave
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Distributed Macro Mini (DM?2) Approach

Parallel Actuation
I \
Small Joint
Actuator
Elastic
Coupling - Large Base
— Actuator




DM2 - Human-Friendly Robot

“the high capacity of a large robot with the
fast dynamics and safety of a small one”



DM?4 Performance

Distributed
Macro-Mini » DM?2/| = 10x reduction in
Actuation effective inertia
= 3X increase In Safety
position control AND
bandwidth Performance

= 10x decrease in
trajectory tracking
error



DM? Testbed

Base actuator Joint actuator
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S2 p : Stanford Human-Safe Robot

artificial muscles with electrical motors
and compact pressure regulators



S2 p : Stanford Human-Safe Robot




S2 p : Stanford Human-Safe Robot
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Shape Deposition Manufacturing

Multi-material Component
molding embedding



Mini Actuator:
Electrical Motor

Macro Actuator:
Pneumatic Muscle

Customized Pressure Regulator

Air Supply Channel

—

Air Exhaust Channel \

Muscle Preload Screw




§2015: New Design



§2015: New Design



Safety Comparison

S2p

Effective Mass: 0.5Kg
DM?2

Effective Mass: 3.5Kg
Human

Effective Mass: 2.1Kg
PUMAS560

Effective Mass: 25Kg



Safety Comparison

S2p(payload: 33.33N)

Normalized Effective Mass:
0.015

DM2 (Payload 60N)

Normalized Effective Mass:
0.058

Human (Payload 62N)

Normalized Effective Mass:

0.034

Simulation Condition
PUMAS60 (Payload 21 '56N) Impact velocity: 3 m/s (=10.8 Km/h )
Normalized Effective Mass: Stiffness between human and robot: 37000 N/m

1.154 Head mass: 5.1kg (mean mass of U.S male)



S2 p : Stanford Human-Safe Robot



The Challenge

Sensing and Perception
real-time, unstructured world

Planning and Control

many degrees of freedom
human-like skills, learning

Human-Robot Interaction
cognitive and physical

Mechanisms and Actuation
Safety & Performance

Interactivity & Human-Friendly



Stanford Robotic Platforms

Romeo & Juliet (1993)



Mobile Manipulation

Human Guided Motion & Human-Robot
Interaction

Stanford Robotic Platforms - Romeo & Juliet (1993)
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Humanoid Robot Control
branching and under-actuated

* Whole-body control strategies
* Constraints and Multi-contacts

» Balance, Locomotion, & Manipulation



3

Joint motions Human-like
Inverse Kinematics Artificial Energy



Whole-body Control

Task & Posture Decomposition



Task Dynamics and Control

Task Dynamics

Ax+ u+ p=F

Task Control
F=N—VVp )+ i1+ P
r=J'F




Task Dynamics — Branching Structures
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Task/Posture Control Structure

Decomposition in torque space

r=J' F +N'T

task =~ task task™ posture F
. taskl
Task Torques: Ftask — Jtask F;ask

Task Consistent Posture Torques:
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Dynamic Consistency:
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Task and Posture Control

~ Task Field
Whole-body s Te

Control =

_ Posture Field

Dynamically
Decoupled

—> no joint trajectories




Learning from the human

Posture Field?



Human Natural Motion

— R)

Motion Capture Motion Characteristics



Human Motion Characterization

Skeletal Muscular

Human motion Marker data _ ,
physiology physiology

Human

Motion
Capture










Simulation 79 DOF and 136 Muscles

Biometric Data & Bone Geometry

Dynamic simulation Motion capture



Learning from the Human

In learned tasks, humans
minimize muscular effort,
under physical and “social’
constraints

=) Physiology-based Posture Field



Physiology-based Posture Field

ATask, F- T'=J'F

Muscle actuation: I = L' m
Muscle capacities: N, )

Configuration-dependent
torque bounds



Physiology-based Posture Field

Human posture is adjusted to
reduce muscular effort

Human-muscular Energy minimized:
E - 2
—Ccm

Function of physiology, mechanical
advantage, and task

E(q)=F'[JWL'N?*L)"'J"F




Data from Subjects




Data from Subjects

2 4 6 81012




Validation - Arm Effort

2
E =cm



Validation - Arm Effort

2
FE =cm



Validation — whole-body effort

2
FE =cm















SAI Environment
Dynamic simulation, control, & haptics



SAI Neuromuscular Library




Human Motion Reconstruction

Injury prevention, Pathology Evaluation, and Athletics



Skill Learning — Tai Chi



Skill Learning — Tai Chi













Contact/Collision Resolution

Crash Tests






Constraints

r — Jcn;%swn;&'y‘;ﬁs@mk T N . r

task™ posture )



Self Collision



Obstacles






Elastic Planning

Real-time collision-free path modification

Connecting

Reactive Local Avoidance
with

Global Motion Planning



Elastic Planning




Elastic Planning

FINISH







Integration
of Locomotion




Multi-Contact Whole-body Control

Integration of \WWhole-Body Control & Locomotion

Under-actuated Balance Reaction forces



Multi-Contact Whole-body Control

= J, . +\Y +N' T

ctea tcpbﬁﬂmk task ™ posture )



Balanced Supporting Contacts
Internal Force Control — Virtual Linkage



Balanced Supporting Contacts
Internal Force Control — Virtual Linkage






Unified Whole Body Control with
Constraints and Contacts

Dynamics
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_ |World Model - Task
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Implementation on the Physical Robot?

SAI

Torques Positions

gy

Torque to
Position
Transformer




Torque to Position Transformer

Torque to Position Transformer

Y

Torque Command

rdes

Torgue to Position
Transformer

D¥s)”’

Motion Controller

Operational
Space

Formulation

A A

ocity Feed-forward to Motor

Joint Position Controller

gemdijnt

Position
Control Unit

D(s)

T off

*

Physical Joint

G(s)

5

Actual Joint Velocity

Actual Joint Position

/

Position Command to Motor

Software

Qact/nt
—

Hardware

Operational Space Control

L

Robot Position Controller




Experimental Result — hand task

— _Error<bmm






Robot-Human Haptic Interaction
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