
Design and Verification of
 Real-Time and Communicating

Software

Michel Diaz, François VernadatMichel Diaz, François Vernadat
 LAAS-CNRS LAAS-CNRS

LAAS-CNRSLAAS-CNRS
Octobre 2008Octobre 2008

40ième Anniversaire du LAAS

I
INTRODUCTION

Design
• Define properties, scenarios or services
• Design Phases

– Spec, Val, Impl, Test
• Hierarchy of Design Steps

– Mechanisms, components, modules, levels, etc

• Using models
– Physical and Logical models
– Software and Hierarchical models

System Models
• Basic Models

– Extended (Timed, etc) Petri Nets
– Extended State Machines
– Extended Process Algebra

• Description Techniques
– Formal: Estelle, SDL, Lotos (FDTs for Protocols)

• Estelle and SDL, Extended State Machine oriented
• Lotos, Extended Process Algebra oriented

– Semi-Formal:
• UML (the pioneer)
• AADL, SysML, UML2 (Object oriented, including SDL)

From Design to Verification
• For Each phase/level, as soon as possible, using a

global model/representation of the system,
 Verify or Simulate its behaviour

• Verification based on Modal Logic
– Because values of propositions evolve dynamically
– Axiomatic proofs not automatic and difficult
– Semantic proofs from Kripke Structure

• Kripke Structure (set of connected Worlds)
– Primitive Predicate symbols (p, q, r,…)
– Interpretations for p, ~p, and, or, .. for a world Wi
– Modalities from a set of worlds connected by a relation R

Semantics in Modal Logic
• The worlds are the system states
• R is accessibility relation between worlds (global behaviour)
• Technical approaches and tools based on the graph
 (whatever defined) by (Linear or) Branching Modal Logic

W0: Initial world

Wi

From Telecommunications
to Embedded and Internet Systems

• Embedded Systems
– Architectures
– Behaviour
– Properties (functional and non functional (time, energy, ...))

– Models, Verification, Evaluation
• Internet Systems

– Architectures
– Behaviour and Performances
– (Minimal) Acceptable Non Optimal design : Best Effort
– Simulations (mainly of implementations)

II
EMBEDDED SYSTEMS

Embbeded systems based on

• System Specification and Requirements
• Design steps

– Technologies to mechanisms
– to equipments to architectures

• Models
• Verification

– Full behaviour and Properties
– Automatic by Tools

• Design supports
– Formal, Verified Designs, e.g. TOPCASED

TOPCASED Project Overview

 Open Source system development environment

 Implementing an integrated model-based development process

- from system specification

- to the final product, including formal verification.

 Reduce development costs by optimised process and tools

 Integrate MDE and formal verification by

- Meta-Modeling, Process modeling

- Model Verification, simulation, static analysis

- Model Transformations

TOPCASED
Analyses or Design Model Simulation

Formal checking

Source or Test Code

Documentation

Transformation

Transformation
Verification loop

Configuration, Change and Requirement management
tools communication

Intermediate Langage : Fiacre

Model-Checkers
Simulators

(Meta)-modeller

Model Transformations

...
Modelling languages

AADL SDL SYSMLPDL

Fiacre

Tina CADP ...

TranslationTranslation

ATL, Kermeta

UMLEditors

Compilers

Intermediate language

Fiacre Example

from ready
req ?c
case c of

get_sum → to send_sum
| get_value (i) → to send_value
end

from send_value
resp !val[i];
to ready

from send_sum
sum, i := 0, 0;
while i < 3 do
 sum, i := sum + val[i], i + 1
end;
sum := sum + val[i];
resp !sum;
to ready

process ATM [req : in request, resp : out nat] is
states ready, send_sum, send_value

var c : request, i : index, sum : nat, val : data := [6, 2, 7, 9]

init to ready

type request is union get_sum, get_value of index end ...

Fiacre Example

Verification by PN Based models and TINA

• Including Time
– Time Petri Nets (intervals on transitions)

– Analysis based on State Classes (symbolic, DBMs)

• And Priorities

• And Suspension/Resumption
– Time Petri Nets + Stopwatches

– State Classes + Over-approximations

• And Data
– Time Transition Systems (TS + Time) & High Level Descript

TINA Tool box (Time PN Analyser)

nd :

 Editor

 Import/export

 Simulator

tina : State spaces

selt : LTL model-checker

struct : Structural Analysis

plan : Path Analysis

ktzio : LTS Conversions

ndrio : Net Conversions

III
INTERNET SYSTEMS

Internet Systems

• Two approaches
– 1. from architecture to layers
– 1. from layers to entities1
– 2. from mechanisms to protocols
– 2. From protocols to entities2

• Design efforts
– From Best-Effort to QoS Internet &
– to Guaranteed QoS, e.g. EuQoS

QoS Internet
• From QoS Applications
• How to derive networks and architectures
• satisfying QoS Bandwidth and Time requirements

Best effort Network (IP - BGP)

Applications (code)
Application Framing and (QoS?) Control

Losses detection

Congestion Control

Flow Control

Losses recovery

A Best-Effort MULTIMEDIA Architecture

Buffering

Synchronization

RTP
UDP

The 3 QoS internet Approaches

1. Network Overprovisionning

2. Optimised Best-Effort mechanisms,
protocols and architectures

3. New Internet Architectures to
guarantee the QoS

QoS Optimisation

• Start from Best-Effort Internet
– without modifying the architecture principles
– using resources/bandwidth available
– analysing and improving present solutions

• Modify mechanisms and protocols
– modify applications (adaptativity, new codecs,…)
– optimise architecture (proxys,…)
– define new protocols (Transport Layer: DCCP,…)

• But still Best-effort (No guarantee)

QoS (hard) Guarantee

New requirements
• Master the Internet
• Be as General and Open as the present Internet
• Propose new mechanisms, protocols, architectures
• Handle sessions and resources

Main problems
• Resulting Complexity ?
• Difficulty of Deployment wrt the present internet ?

Vertical (Applis-to-Networks) and
Horizontal (Host-to-Host) problems

Network
Sub-

layers

All
eg MM
Applis

QoS requirements
Applications

QoS-oriented
Transport protocols

* bandwidth
* Time constraints
 (delay, jitter)
* synchronization
* Partial reliability and order

Mechanisms and protocols
in the middleware

IntServ
(RSVP) DiffServIP Serv

Best-Effort

Infrastructure
capability

Access network

Access network

Access netw

Access network

Access
netw

??? ???

Multi-
Techno
logies

Multi-
protocols

A lot of work done (for QoS)

• Many mechanisms and protocols
• Many partial architectures

But HOW to INTEGRATE
• in a globally coherent
• and easy to deploy way
• from User to User :

– Performing mechanisms
– Their efficient composition in needed protocols
– ALL protocols, e.g. data and services

EuQoS : Design Meta-Rules

- Design the complete architecture
Mechanisms designed isolated from global context

 have a low probability to lead to satisfactory solution

- End2End identical solutions cannot work
given the complex and geographical topology,

the approach must handle diversity

- Only key Signalling/Interfaces to be defined
Freedom to be given to designers in each technology

to develop their most efficient solutions

=> Virtualize and Abstract Domains

USER 1 USER 2

Network Technology Independent sub-layer

Application QoS-based signaling

RM1 RMi RMj RMk RM2

Abstract Virtual Network Layer

Application Layer
Appli

Resource Managers (RM)

Appli

IMPORTANCE:
1. OF SIGNALLING

2. OF ABSTRACT MODELS

Abstract Models in RMs
 Ex: F (Border Routers)

Ri

Rb

Ri

Rb

Rb

Rb

Rb

Lint

LintLint

Lint

Lint

Ri

Ri

Ri

Ri

Lext

Lext

Lext

Lext

Lext

Topology
Tr

Model Mr

Rb

Rb

Rb

Rb

Rb

L’

L’

L’

L’

Lext

Lext

Lext

Lext

Lext

Abstract
Topology

Ta

Model Ma

such that : PQoS on Ta(Ma) => PQoS on Tr(Mr)

PQoS

USER 1 USER 2

Com

Prot

Ressource Allocators

Network technology Independent sub-layer
Resource Managers

Network Technology Dependent s-l

Application QoS-based end-to-end signaling

Com

Prot

Access
Network

1

QoS
Domain

i

Access
Network

2

QoS
Domain

k

QoS
Domain

j

RA1 RAkRAjRAi RA2

RM1 RMi RMj RMk RM2

Abstract Virtual Network Layer

Application Layer
Appli

l

Appli

Main Design Steps
1. Independence of :

• Applications wrt Virtual networks wrt
• Virtual networks wrt Technologies
• Signaling wrt Data Plane

2. Integration of Applis with
• QoS Invocation (Admission Control)

• Defined full Architecture
• Linked to main present solutions
• Linked to scalability

• QoS Network layer : CoS (Classes of Services)
• QoS Signalling
• QoS Transport layers

QoS Network Layer: Classes of Services

Classes of Service EQ-CoS CoSs

RT Maximum Bandwidth = G

NRT Minimum Bandwidth = g

BE No guarantee

E2E CoSs – aggregated QoS and
CoSs for EuQoS

QoS EuQoS SIGNALING (EQ)

• Appli-to-Appli coding: EQ-SDP
• Appli-to-Appli QoS: EQ-SIP
• Appli-to-Virtual network : EQ-QoD
• Virtual Network CoS: EQ-NSIS
• Virtual-to-Real networks: COPS
• 3 classes QoS Routing: EQ-BGP
• End-to-End path: EQ-path
• Telcos MPLS integration: EQ-PCE

UDPUDP

ORDERORDER

RELIABILITYRELIABILITY

00

11

DCCP

QoS Optimised Transport Layer: ETP

TCPTCP SCTP

11
00

ETPETP
For For
DataData

EuQoS EQ-ETP services

Streams
Error tolerant e.g.

VoD

Non-Streams
Error intolerant e.g. file

transf

RT ETP=UDP[RC] ETP[EC]

NRT ETP[gTFRC] ETP[gTFRC+EC]

BE ETP[TFRC+DT] ETP[TFRC+DT+EC]

Network
Classes of Service

Application
profile

USER 1 USER 2

EQ-SDP

EQ-SIP
Signaling

EQ-SIP
Signaling

Network technology Independent sub-layer

Network technology dependent sub-layer

Application QoS-based e2e signaling

Access
Network

1

QoS
Domain

i

Access
Network

2

QoS
Domain

k

QoS
Domain

j

RA1 RAkRAjRAi RAn

RM1 RMi RMj RMk RMn

Virtual Network Layer

Application Application

Full EuQoS Architecture

EQ-SDP

EQ-ETP
Transport
Protocols

EQ-ETP
Transport
Protocols

EQ-NSIS EQ-NSISEQ-NSIS EQ-NSIS

EQ-SIP
proxy

EQ-SIP
proxy

Application Layer

EQ-SIP, EQ-SDP

EQ-NSIS

EQ-BGP

C
O

PS

C
O

PS

C
O

PS

C
O

PS

C
O

PS

EQ-PCE

EQ-PATH

The EQ-Path includig domains (BGP-based)
 and sets of domains (MPLS-PCE)

MPLS

BGP

EQ-
Path

Access AccessCoreCore

AS1 AS2 AS3 AS4

BGPBGP MPLS

IV
CONCLUSION

The Future of Embedded systems

• Types of systems
– From SW (timed models) to SW/HW (hybrid systems)
– Systems of Systems
– Mobile Systems
– Distributed and Networked Systems

• Properties, Algorithms and Tools
– Quantitative analysis

• Schedulability analysis, consumption
– High level constructs integrating formal models
– Scalability: Managing Combinatorial Explosion

• Compositional verification
• Parallel model-checking
• Abstractions (e.g. preserving properties), etc

The Future of Internet systems

• Full mobility
• Network of the future (e.g. GENI, FIRE)
• Internet Virtualisation

– Virtualised routers able to run in parallel a set of different protocols

• Application-aware networking
• Sensor networks and ad-hoc networks
• Internet of the Things

– => importance of the sensor & things (values, etc)

• Real-Time internet

Integration

To Go from Embedded system
 to a (given) sub-set of the Future Internet

• Include some Sensors and Things, with mobility
• Define Real-Time protocols from Applications

• Integrate Multilayering and Composability
• Develop Easily Verifiable Methodology

(Extending adequate methods and tools)

MERCI

