Design and Verification of
Real-Time and Communicating
Software

Michel Diaz, Francois Vernadat
LAAS-CNRS

LAAS-CNRS
Octobre 2008

40iéeme Anniversaire du LAAS



1
INTRODUCTION



Design

Define properties, scenarios or services
Design Phases

— Spec, Val, Impl, Test

Hierarchy of Design Steps

— Mechanisms, components, modules, levels, etc

Using models
— Physical and Logical models
— Software and Hierarchical models



System Models

e Basic Models
— Extended (Timed, etc) Petri Nets
— Extended State Machines
— Extended Process Algebra

* Description Techniques

— Formal: Estelle, SDL, Lotos (FDTs for Protocols)
e Estelle and SDL, Extended State Machine oriented
* Lotos, Extended Process Algebra oriented
— Semi-Formal:
 UML (the pioneer)
 AADL, SysML, UML2 (Object oriented, including SDL)



From Design to Verification

 For Each phase/level, as soon as possible, using a
global model/representation of the system,

Verity or Simulate its behaviour

* Verification based on Modal Logic
— Because values of propositions evolve dynamically
— Axiomatic proofs not automatic and difficult
— Semantic proofs from Kripke Structure

* Kripke Structure (set of connected Worlds)
— Primitive Predicate symbols (p, q, r,...)
— Interpretations for p, ~p, and, or, .. for a world W,
— Modalities from a set of worlds connected by a relation R



Semantics in Modal Logic

* The worlds are the system states
* Ris accessibility relation between worlds (global behaviour)

* Technical approaches and tools based on the graph
(whatever defined) by (Linear or) Branching Modal Logic

W,: Initial world




From Telecommunications
to Embedded and Internet Systems

 Embedded Systems

— Architectures
— Behaviour
— Properties (functional and non functional (time, energy, ...))
— Models, Verification, Evaluation
e Internet Systems
— Architectures
— Behaviour and Performances

— (Minimal) Acceptable Non Optimal design : Best Effort
— Simulations (mainly of implementations)



11
EMBEDDED SYSTEMS



Embbeded systems based on

System Specification and Requirements
Design steps

— Technologies to mechanisms
— to equipments to architectures

Models

Verification
— Full behaviour and Properties
— Automatic by Tools

Design supports
— Formal, Verified Designs, e.g. TOPCASED



TOPCASED Project Overview

» Open Source system development environment

» Implementing an integrated model-based development process
- from system specification
- to the final product, including formal verification.

» Reduce development costs by optimised process and tools

» Integrate MDE and formal verification by
- Meta-Modeling, Process modeling
- Model Verification, simulation, static analysis

- Model Transformations



TOPCASED

Analyses or Design Model

- Simulation
S — \ TOPCASED i i s

Verification -lydopm ==

T mnsformatw&;\ \A/\\
7] e &
e P 9 TOPCASED
TOPCASED = H_\/ Formal checkmg

>/
X

TOPCASED

Transformation

>/
S
TOPCASED

Source or Test Code

- Documentation

< - >
¥ Configuration, Change and Requirement management 7.

TOPCASED . .
tools communication

TOPCASED



Intermediate Langage : Fiacre

(Meta)-modeller Modelling languages

Editors

Model Transformations L, Kermeta

Intermediate language

Compilers :[?Ks ation

Model-Checkers .
Simulators CADP Tina




Fiacre Example

type request is union get_sum, get_value of index end ...

process ATM [req : in request, resp : out nat] is

states ready, send_sum, send_value

var c : request, i : index, sum : nat, val : data :=[6, 2, 7, 9]
init to ready

from ready from send sum
req ?c _
case c of sum, 1 := 0, 0;
get_sum — to send sum while 1 <3 do
| get value (i) — to send value sum, i ;= sum + val[i], 1+ 1
end end;

sum := sum + val[i];
from send value

resp lval[i];
to ready

resp !sum;

to ready




Verification by PN Based models and TINA

Including Time

— Time Petri Nets (intervals on transitions)

— Analysis based on State Classes (symbolic, DBMs)

And Priorities

And Suspension/Resumption

— Time Petri Nets + Stopwatches

— State Classes + Over-approximations

And Data

— Time Transition Systems (TS + Time) & High Level Descript



TINA Tool box (Time PN Analyser)

nd : Time Petri Nets RT/Lotos Cotre Fiacre Others ? API
Editor l l l l l
Import/export Front end: compilers
Simulator — l_

tina : State spaces e

selt : LTL model-checker ( engine ]‘— rerameters

struct : Structural Analysis ARSURCEKTS I

plan : Path Analysis Back enel: printers

ktzio : LTS Conversions l l l l l |

ndrio : Net Conversions 28 g anee beg Ktz .

(Textual) (binary)



111
INTERNET SYSTEMS



Internet Systems

* Two approaches
— 1. from architecture to layers
— 1. from layers to entities1
— 2. from mechanisms to protocols
— 2. From protocols to entities2

* Design efforts
— From Best-Effort to QoS Internet &

—to Guaranteed QoS, e.g. EuQoS



QoS Internet

 From QoS Applications
 How to derive networks and architectures
 satisfying QoS Bandwidth and Time requirements

Packet Loss
A

3%

Coovessatiozal
voice ad vidso

100 s
Comnssdd

Zaro seetpel

loss ETHRL
Sl gl

Figure 1/G.1010 - Mapping of user-centric QoS requirements



A Best-Effort MULTIMEDIA Architecture

Applications (code)
Application Framing and (QoS?) Control

Losses detection Flow Control Buffering
Losses recovery Congestion Control Synchronization
RTP
UDP

@ effort Network (IP - BGP

e ——




The 3 QoS internet Approaches

1. Network Overprovisionning

2. Optimised Best-Effort mechanisms,
protocols and architectures

3. New Internet Architectures to
guarantee the QoS



QoS Optimisation

e Start from Best-Effort Internet

— without modifying the architecture principles
— using resources/bandwidth available
— analysing and improving present solutions

 Modity mechanisms and protocols
— modify applications (adaptativity, new codecs,...)
— optimise architecture (proxys,...)
— define new protocols (Transport Layer: DCCP,...)

* But still Best-effort (No guarantee)



QoS (hard) Guarantee

New requirements

 Master the Internet

* Be as General and Open as the present Internet

* Propose new mechanisms, protocols, architectures
 Handle sessions and resources

Main problems
* Resulting Complexity ?
* Difficulty of Deployment wrt the present internet ?



Vertical (Applis-to-Networks) and
Horizontal (Host-to-Host) problems

QoS requirements
d Access network

Access network

Applications

All
eg MM * synchroni ation
= *P' olii bili ANhd ord
Applls Mechanisms ahd protocols
in the mid lleware
Multi- |  QoS-offiented | [ T M) (9. &)
protocols
Network j=sery
Sub- L(RSVP) ceess

layers Access netwo netw
Multi- 3
Techno . =
logies Py OD D) Access netw

e o ©o e o o



A lot of work done (for QoS)

* Many mechanisms and protocols
 Many partial architectures

But HOW to INTEGRATE
* in a globally coherent

* and easy to deploy way

* from User to User :

— Performing mechanisms
— Their efficient composition in needed protocols
— ALL protocols, e.g. data and services



EuQoS : Design Meta-Rules

- Design the complete architecture

Mechanisms designed isolated from global context
have a low probability to lead to satisfactory solution

- End2End identical solutions cannot work

given the complex and geographical topology,
the approach must handle diversity

- Only key Signalling/Interfaces to be defined

Freedom to be given to designers in each technology
to develop their most efficient solutions

=> Virtualize and Abstract Domains



USER 1 Application Layer USER 2

Application QoS-based signaling

e
Abstract Virtual Network Layer

Resource Managers (RM)

l und = Tund — Jind — D 'EI

RM1 RM| RMJ RMK | RM2

Network Technology Independent sub-layer

IMPORTANCE:
1. OF SIGNALLING
2. OF ABSTRACT MODELS




Abstract Models in RMs

Ex: F (Border Routers)
such that : P, on Ta(Ma) => P,q on Tr(Mr)

Model Ma

Abstract
Topology
Ta

Topology
Tr

Model Mr




USER 1 Application Layer USER 2

Application QoS-based end-to-end signaling

Abstract Virtual Network Layer
Y

\‘ Network technology Ihdependent sub-layer
Resource Managers

E e, e, Sl =

rm1t RM| RMj
v v v
Com v Ressource Allocators
RA1 -
: RAk
Prot RAI e
A QoS_ QoS QOS_ Access
ccess Domain Domain Domain Network

Network i .
1 | ] K 2

Network Technology Dependent s-I




Main Design Steps

1. Independence of :
 Applications wrt Virtual networks wrt
* Virtual networks wrt Technologies
* Signaling wrt Data Plane

2. Integration of Applis with

* QoS Invocation (Admission Control)

* Defined full Architecture
 Linked to main present solutions
* Linked to scalability

* QoS Network layer : CoS (Classes of Services)
* QoS Signalling
* QoS Transport layers



QoS Network Layer: Classes of Services

Classes of Service EQ-CoS CoSs
RT Maximum Bandwidth = G
NRT Minimum Bandwidth = ¢

BE No guarantee




E2E CoSs — aggregated QoS and
CoSs for EuQoS

EUQOS

End-to-end End-to-end EUQOS
Applications CoSs CoSs Applications
VTC RT interactive RT interactive VTC

Data Data
Transfer Transfer

All Networks




QoS EuQoS SIGNALING (EQ)

» Appli-to-Appli coding: EQ-SDP
* Appli-to-Appli QoS: EQ-SIP
* Appli-to-Virtual network : EQ-QoD

* Virtual Network CoS: EQ-NSIS
* Virtual-to-Real networks: COPS

* 3 classes QoS Routing: EQ-BGP

* End-to-End path: EQ-path

* Telcos MPLS integration: EQ-PCE



QoS Optimised Transport Layer: ETP

)

g

)

RELIABILITY /‘O‘O‘O‘OC = Cv - 8 8 g
1~ SCTP EETCP
For 0-—0-—0-
Data < ETP
0 \.
:82: o ORDER




EuQoS EQ-ETP services

Application

profile Streams Non-Streams
Network _ Error tolerant e.qg. Error intolerant e.q. file
Classes of Service VoD transf
RT ETP=UDP[RC] ETP[EC]
NRT ETP[gTFRC] ETP[gTFRC+EC]
BE ETP[TFRC+DT] | ETP[TFRC+DT+EC]




Full EuQoS Architecture

’!!

USERT | EQ-sIP Application Layer EQ-SIP
Application proxy < P proxy
S ; Application QoS-based e2e signaling 1
EQ-SIP EQ-SIP, EQ-SDP
Signaling .
Virtual Network Layer
Network technology Independent sub-layer
m% IEH = “e
.
RM1 RM| RMj “ RMKA | RMn? |
5 ) [ g \ /e 5 \ 14
3 &) W o o
EQ-ETP Network technology dependent sub-layer
Transport RA1 ——— SOPCE . RANn
Protocols -
QoS QoS
) QoS Access
REEEEE ' Network
Network 2
A N
e )-P

USER 2

pplication

EQ-SIP
Signaling

EQ-SDP

EQ-ETP
Transport
Protocols




The EQ-Path includig domains (BGP-based)
and sets of domains (MPLS-PCE)




1V
CONCLUSION



The Future of Embedded systems

 Types of systems
— From SW (timed models) to SW/HW (hybrid systems)
— Systems of Systems
— Mobile Systems
— Distributed and Networked Systems

* Properties, Algorithms and Tools
— Quantitative analysis
* Schedulability analysis, consumption
— High level constructs integrating formal models
— Scalability: Managing Combinatorial Explosion
« Compositional verification

e Parallel model-checking
e Abstractions (e.g. preserving properties), etc



The Future of Internet systems

Full mobility
Network of the future (e.g. GENI, FIRE)
Internet Virtualisation

— Virtualised routers able to run in parallel a set of different protocols
Application-aware networking

Sensor networks and ad-hoc networks

Internet of the Things

— =>importance of the sensor & things (values, etc)

Real-Time internet



Integration

To Go from Embedded system
to a (given) sub-set of the Future Internet

* Include some Sensors and Things, with mobility
* Define Real-Time protocols from Applications

e Integrate Multilayering and Composability
* Develop Easily Veritiable Methodology

(Extending adequate methods and tools)



MERCI





