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e Origin of G-Networks: the RNN
e Biological Inspiration for the RNN

e Applications
— modeling biological neuronal systems
— texture recognition and segmentation
— Image and video compression
— multicast routing
— Network routing (Cognitive Packet Network)

e Gene Regulatory Systems
e Networked Economics: Auctions
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Random Spiking Behaviour of Neurons
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The RNN: A Model of Random Spiking Neurons

Some biological characteristics that the model should include:
- Action potential “Signals” in the form of spikes
EXxcitation-inhibition spikes
Modeling recurrent networks
Random delays between spikes
Conveying information along axons via variable spike rates
- Store and fire behaviour of the soma
- Reduction of neuronal potential after firing
- Possibility of representing axonal delays between neurons
- Arbitrary network topology
- Ability to incorporate different learning algorithms: Hebbian,
Gradient Descent, Reinforcement Learning, ..
- Synchronlsed firing patterns
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Queuing Networks + Stochastic Petri Nets : Exploiting the Analogy

Discrete state space, typically continuous time, stochastic
models arising in the study of populations, dams,
production systems, communication networks ..

oTheoretical foundation for computer and network systems
performance analysis

o Open (external Arrivals and Departures), as in Telephony,
or Closed (Finite Population) as in Compartment Models

0 Systems comprised of Customers and Servers

o Theory is over 100 years old and still very active ..

0 Big activity at Telecom labs in Europe and the USA, Bell

Labs AT&T Labs, IBM Research
0 More than 100,000 papers on the subject ..
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Queuing Network <->

0 Both Open and Closed Systems

0 Systems comprised of Customers and Servers

0 Servers = Neurons

o Customer = Spike: Arriving to server will increase the gueue
length by +1

0 Excitatory spike arriving to neuron will increase its soma’s
potential by +1

0 Service completion (neuron firing) at server (neuron) will
send out a customer (spike), and reduce queue length by 1

o Inhibitory spike arriving to neuron will decrease its soma’s
potential by 1

e Splkes (customers) leaving neuron i (server i) will move to

~__heuron | (server J) in a probabilistic manner
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RNN

Mathematical properties that we have established:

o0 Product form solution

0 Existence and uniqueness of solution and closed form analytical
solutions for arbitrarily large systems in terms of rational functions of first
degree polynomials

0 Strong inhibition — inhibitory spikes reduce the potential to zero

o The feed-forward RNN is a universal computing element: for any
bounded continuous function f: R"—> R™, and an error ¢, there is a FF-
RNN g such that ||g(x)-f(x)||< € for all x in R"

S QQ?)_speed for gradient descent algorithm, and
~ O(n?) for feedforward network

—
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T

e This 15 a spiked neural network model .. excitation
spikes *“+1" and inhibition spikes “-1" trawel in the
newtork

e The state of neuron 7 1s a non-negative integer k;
e The state of the n-neuron network is a vector (ky, ..., kn)

SEERARES
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Mathematical Model: A “neural” network with n neurons

= Internal State of Neuron i at time t, is an Integer Ki(t) > 0
< Network State at time t is a Vector

K@) = (K@), ..., Ki(D), ooy KD, on, K (D))

= If K(t)> 0, we say that Neuron i is excited it may fire (in which
case it will send out a spike)

= Also, if K(t)> O, the Neuron i will fire with probabillity r,At +o(At)
In the interval [t,t+At]

= |f K(t)=0, the Neuron cannot fire at t*

When Neuron i fires at time t:
- It sends a spike to some Neuron j, with probabillity p;
- Its internal state changes Ki(t*) = Ki(t) - 1

-
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Mathematical Model: A “neural” network with n neurons

The arriving spike at Neuron j is an:

- Excitatory Spike w.p. p;*

- Inhibitory Spike w.p. p;-

-p;= Pyt + Py with 2, p; <1foralli=1,.,n
From Neuron i to Neuron j:

- Excitatory Weight or Rate is w;* = r; p;;*

- Inhibitory Weight or Rate is w;~ =1, p;°

- Total Firing Rate is r,= Z"_, (w;* + w;")
To Neuron i, from Outside the Network

- External Excitatory Spikes arrive at rate A,
- - External Inhibitory Spikes arrive at rate A,
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p(k,t) =Pr[x(t)=k] where{x(t):t >0}isa discrete state - space Markov process,
and ki =k+e —e;, ki" =k +¢ +e;
k' =k +e,, ki =k—eg,:

The Chapman - Kolmogorov Equations [Neural Master Equations] :

d = < 4=t = + =

at p(k,t) = Z[p(kij O py Uk, (1) > 0]+ p(k; ™, t)rp; 1+ Z[p(ki (4 +1d; )+ A pki, 1)1k (t) > 0]
I,] 1

= p(k,t)Z[(/% +r)Ak; (1) > 0]+ A ]
Let:

p(k) = !L’E Prix(t)=k], and g, = !Lrg Pr[x (t) > 0]

Theorem :[Gelenbe Neural Computation'90] If the C-K equations have a stationary solution,

then the solution has the '‘product form" p(k)=_li11qik‘ (1-q;), where
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External Arrival -+
Rate of Excitatory Q) Ji
Spikes

Probability that
Neuron i is excited

Elmng Rate of External Arrival S ..
euron | Rate of Inhibitory 6 JI
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Theorem (Gelenbe Neural Computation '93)
The system of non-linear  equations

_ AﬁZ,-anpfa
ri+/1i+zjqujpj‘i
has an unique solution if all the g, <1

a; 1<i<n

Theorem (Gelenbe, Mao, Da-Li IEEE Trans. Neural Nets.'99)

Let g:[01]" >R be continuous and bounded. For any &>0,

RNN  with two output neurons q,.,q, St

sup

g(xX)-y(X)|<xe  for y(x):1q0+ 0,
_qo+ 1_q0_

xe[0,1]Y
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e Neurons exchange Excitatory and Inhibitory Spikes (Signals)
e Inter-neuronal Weights are Replaced by Firing Rates

e Neuron Excitation Probabilities obtained from
State Equations

e Steady-State Probability is Product of Marginal Probabilities

e Separability of the Stationary Solution based on Neuron
Excitation Probabillities

e EXxistence and Uniqueness of Solutions for Recurrent Network
e Learning Algorithms for Recurrent Network are O(n?)
e Multiple Classes (1998) and Multiple Class Learning (2002)
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Sample of Publications

E. Gelenbe. Random neural networks with negative and positive signals and
product form solution. Neural Computation, 2:239-247, Feburary 1990.

e E. Gelenbe. Learning in the recurrent random neural network. Neural
Computation, 5:154-164, 1993.

e E. Gelenbe and C. Cramer. Oscillatory corthico-thalamic response to
somatosensory input. Biosystems, 48(1-3):67-75, November 1998.

e E. Gelenbe and J.M. Fourneau. Random neural networks with multiple classes
of signals. Neural Computation, 11(4):953-963, May 1999.

e E. Gelenbe, Z.H. Mao, and Y.D. Li. Function approximation with spiked random
networks. IEEE Transactitons on Neural Networks, 10(1):3-9, January 1999.

e E. Gelenbe and K. Hussain. Learning in the multiple class random neural
network. IEEE Transactions on Neural Networks, 13(6):1257-1267, November
2002.

e E. Gelenbe, T. Kocak, and Rong Wang. Wafer surface reconstruction from top-
down scanning electron microscope images. Microelectronic Engineering,
75(2):216-233, August 2004.

e FE. Gelenbe, Z.H. Mao, and Y.D. Li. Function approximation by random neural
- networks with a bounded number of layers. Journal of Differential Equations
— _an_éi;Dynamlcal Systems, 12(1 2):143-170, 2004.
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Some Applications

e Cortico-Thalamic Response ...

e Texture based Image Segmentation
e [Image and Video Compression

e Multicast Routing

= CPN Routing

—

Imperial College
_London




Cortico-Thalamic Response to Somato-Sensory Input
(what does the rat think when you tweak her/his whisker?)
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Scientific Objective
Elucidate Aspects of Observed Brain Oscillations

e Clarify Some of the Mechanisms which Influence (Brain) Cortico-
Thalamic Oscillations

e Start with Oscillations Observed in a Physiologically well under-
stood system: the Rat “Barrel Neurons”

e Use a Recurrent “Random Network (RNN)" Spiked Model which

actually Models the (Observed) Natural Neurons' Spiked Be-
haviour

e |dentify Primary Factors Causing Oscillations
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The Biological Model

e The somatosensory stimulus (involving a single whisker of the
rat) impacts a physiological system in which the number of
thalamic cells T is of the order of 103*, while 102 cortical cells
" are involved.

e [he model assumes that all cortical cells involved are statisti-
cally identical, that all thalamic cells are statistically identical,
and that all reticular layer cells are also statistically identical.

e In relation to Simons et al., thalamic cells T correspond to
thalamo-cortical units (TCU), cortical cells ' correspond to
“regular spike” barrel units (RSU) ofsomatosensory cortex.

= —
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Building the Network Architecture
from Physiological Data

;_'—;'-':--?‘?i—" Input signal: e(t)
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First Step: Comparing Measurements and Theory:
Calibrated RNN Model and Cortico-Thalamic Oscillations

O/P Thalamus pulses per second

OIP Cortex pulses per second

et
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Gedanken Experiments that cannot be Conducted in Vivo:
Oscillations Disappear when Signaling
Delay in Cortex is Decreased

IfP & OJ/P rates /P pulses per second

Brain Stem
Input Pulse
Rate

0.05 0.1

O/P Cortex pulses per second O/P Thalamus pulses per second
120

100
a0
B0
40
20

0
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Gedanken Experiments: Removing Positive Feedback In
Cortex Eliminates Oscillations in the Thalamus

I/P & OJ/P rates I/P pulses per second

80

Brain Stem
. Input Pulse
40 Rate

20

1]
0.05 0.1 0 0.05 01

O/P Cortex pulses per second Q/P Thalamus pulses per second
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When Feedback in Cortex is Dominantly Negative, Cortico-
Thalamic Oscillations Disappear Altogether

/P & OJ/P rates I/P pulses per second

Brain Stem
Input Pulse
Rate

0.05 0.1 0.05 0.1

/P Cortex pulses per second /P Thalamus pulses per second
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Summary of Findings Resulting from the
Model

e Positive Feedback loops within cortex significantly affect the ex-
Istence of the damped oscillatory phenomenon, and its duration.

Positive cortex to thalamus Feedback 1s not needed for cortical
oscillations, but i1s needed for thalamic oscillations.

Cortex to thalamus negative Feedback via the reticular layer,
and cortex to cortex inhibitory connections, contribute to damp-

Ing.
The reticular layer affects the amplitude of the oscillations, but
not their causes. Projections from thalamus to cortex reduce the

amplitude but do not modify the damping constants or periods
of the oscillations.

. -
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Building a Practical “Learning” Algorithm:
Gradient Computation for the Recurrent RNN is O(n?)

Let g = (g1, - -,G9n), and define the n >x n matrix
W = {[w (i, ) — w (4, F)g 1/ AT} &Fi=1,---,n
The wvector equations can now be written as

dq/owt (u,v) = g/ 8w (u, v)W + v (u, v)gy
dq/8w™ (u,v) = 8q/Fw™ (u, vIW + v (u, v)gu

where the elements of the n vectors
M (w, v) = [y (u.w), - - -, 3 (u. v)]
and v (w,v) = [y (w,v),---,vo (w, v)] are

—1/A(2) if u=4di,v = i
i (uw.v) = 4 +1/ A () if uw=i, v =i
0 otherwise
A1+ @)/ A (i) fu=iv=2
— 1/ A (i) fu=z2, vz
i (u v} {_q,-,.r',.x—{i} if u ki, v =i
0 otherwise.
MNotce that
8q /8w (u, v) = ¥ (u, v)g.[I — W]
dq/fw  (uw, v) = v (u, v)g.[I — W]~
where I denotes the n x mn identity matrix. Hence the
main computational effort in this algorithm is to obtain
[I — W]~ 1. This is of time complexity O(n?) or O(mn?)
e if an m-step relaxation method is used.

———" =
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Texture Based Object Identification Using the RNN
US Patent '99 (E. Gelenbe, Y. Feng)

NEURAL NETWORK

OUTPUT
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1) MRI Image Segmentation
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MRI Image Segmentation

| SELECT LABEL

Input Image
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Simulating and Planning
Gamma Therapy &
Surgery

Extracting Tumors
from MRI
T1 and T2 Images
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Neural Still Image Compression
Find RNN R that Minimizes

I RO -11]

Over a Training Set of Images {1}

ORIGINAL
RECONSTRUCTED

IMAGE
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RNN based Adaptive Video Compression

SME as a fundion of frame numbar Bils ransmifed as & lunciion of frams number
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Figure 6: Experimental results for motion detection with d = 1: a) PSNR as a function of frame
number, b) Number of bits transmitted as a function of frame number

* Imperial College
London =




Frpure 3k Resuls of e 100G framme of 1he salesman segqueenos {or 08 = 30 aned o
L3150 EEE). 3 030,00 18 53T L) and T 122051 J1

Imperial College
London



mm“wmmmmu

St gt mamk CAE A EEA - Am AR R AAE s R - A AEml G e s e R e
. ; - "

a
-
-

Ferasrnncaterrrranrnrnrlorevsasnnalos i rnnannn
" B

*

- Bl . a a
B e
- - " a

Amama s sEEe e b
* -
H

{'l-ll'll-l [T

L
SEEEEREREEE PR EY EEEREE

28-%0 wo:mmzsosmmmmsc.ns;u
Compression Ratio
Fig. 17. Graph of video quality versus compression ratios for
S subsamplmﬂ of one (solid), three (dashed). four (dot-dashed), five
: -—‘ ~ (dotted). six (solid with stars) and H.261 (solid with circles).

Imperlal College

London
T —




mmmmﬁmmmmmn

mmw s EEEE R dw | Y ra——— BT T
Fakmn L RN slamee. pom LR EEE RS
brwma s FEERE N D - B EEE e EEEEERS

- r "
A EEFEF na WA e dew e CEEREET R EED L E - PR
" "

frdE s s b kb e e ma -

A R I I TrmsEsSs LA Ed e R r R R T AR sl AR R s R r TR AR T PR S A EA23dE e e
. s a

L]
. O e-G-oRReatn. . U,

-
EETE RS S SRR EE R RN sssseam LI T
*

= EELRE EREEE R PR RN R RN E R e es s
L LT Ty R R L I
L e ]

R T T

=
ﬂd

- * -
TEEEEmI LSS E AT R DR R R BERE S . LRI

H .
FrEfEEEE E e W TmALE EEE N EELEE B I R T

a -
v L xm -t-------u--n-q-d++--:-----..---- BEEBSdak iR e m s e

e L T T L

. +
. ®

. -
pisarwan il I R R Tk
—— - - —

- - = - -

IR ey

...-11-51-1-1-

e
(KRR T

-
i I R I I S, Ew e SemrmaraEmEsEEE e
-

a
SR LR l‘;_-.q.q'-l-Ill--l-I-i-ii --q..-l--qd.!-|-|+.r:----.-q.-|-!-|i-|.-.--‘
- -
BrEEss s mg T B e e
+* - -
- H

HEA A s EEEmt R ER AN As s R e R s M O T

.-;-.-E.a.{ah

S R

107
o

-

200

8

300 600
Compression Ratio
Fig. 18. Graph of compression time versus compression ratios

- for subsampling of one (solid), three (dashed), four (dot-dashed),
~ five (dotted), six (solid with stars), and H.261 (solid with circles).

Imperial College

London
E;—'-_ — Y




3) Multicast Routing
Analytical Annealing with the RNN

similar improvements were obtained for (a) the Vertex Covering Problem
(b) the Traveling Salesman Problem

e Finding an
optimal “many-
to-many
communications
path” in a
network Is
equivalent to
finding a Minimal

W
[ =
i
=
(=}
@
@
E
p=
=]
G

Steiner Tree. This is
an N P_Com plete i : : : 1:2 1:4 1:6 1:8 2:[] 2:2 24
p ro b I e m No. of destination vertices, |D|

Figure T: Percentage of optimal solutions found by each method for graphs with 25 vertices
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4) Learning and Reproduction of Colour Textu_r"ij—_';f

The RNN is
used to Learn Existing

The same RNN is then
used as a Relaxation

Machine to Generate
the Textures

The “use” of this
approach is to store
textures in a highly

e —
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e Conventional QoS Goals are extrapolated from Paths, Traffic,
Delay & Loss Information - this is the “Sufficient Level of
Information” for Self-Aware Networking

< Smart packets collect path information and dates

e ACK packets return Path, Delay & Loss Information and deposit
W(K,c,n,D), L(K,c,n,D) at Node c on the return path, entering
from Node n in Class K

< Smart packets use W(K,c,n,D) and L(K,c,n,D) for decision
making using Reinforcement Learning

Imperial College



1) N Uses the Data in Mailbox
to Update the RNN Weights

Packet P with

Source S and

Destination D
Arrives at Node N
Via Link L

N Computes the q(i) from
the RNN, picks largest q(X)

with X different from Link L,
and sends the CP out from N
along Link X

2) If d is the current date
at N, node N stores the pair
(N,d) in the CP

N Creates 1) From CP’s route r, N gets
ACK Shortest Inverse Route R
Packet 2) N Stores R in ACK with

all Dates when CP visited

For CP each node in R

Since P (DP or ACK) contains
its own route R, Node N
Sends Packet P out
From the output Link to
Its neighboring node
that comes after Nin R

N sends ACK along
Route R back to the
Source Node S of the CP

P is thus an ACK
Let T be the current date at N:
1) N copies the date d from P

that corresponds to node N

2) N computes Delay = T-d and

updates its mailbox with Delay

Node S copies Route R
into all DPs
going to D, until a new
ACK brings a new route R’




The Goal Function to be minimized is selected by the user, e.qg.
G = [1-L]W + L[T+W]

On-line measurements and probing are used to measure L and W,
and this information is brought back to the decision points

The value of G is estimated at each decision node and used to
compute the estimated reward R = 1/G

The RNN weights are updated using R stores G(u,V) indirectly in the
RNN which makes a myopic (one step) decision

Imperial College



e Each “neuron” corresponds to the
choice of an output link in the
node

e Fully Recurrent Random Neural
Network with Excitatory and
Inhibitory Weights

e Weights are updated with RL

e Existence and Uniqueness of
solution is guaranteed

= Decision is made by selecting the
outgoing link which corresponds
to the neuron whose excitation
probability is largest

Imperial College



Reinforcement Learning Algorithm

T, =al,_,+(1-a)R,R

wh(, j) <« w'(, j) +

w(i, k) <« w(i, k) +

P .
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ri*:zn:[w+(i,m)+w‘(i,m)]
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Route Adaptation without Obstructing Traffic
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Packet Round-Trip Delay with Saturating
Obstructing Traffic at Count 30

Round trip delay
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Route Adaptation with Saturating
Obstructing Traffic at Count 30
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...............................................................................................

Imperial Lonege
London

- R




Packet Round-Trip Delay with Link Failure at Count 40

Round trip delay

..................................................................................................

..................................................................................................

.................................................

................................................
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Packet Round-Trip Delay with Link Failure at Count 40
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Round trip delay
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RNN

Other Extensions to the Mathematical Model

O Model with resets — a node can reactivate its neughbours state if they are
guiescent .. Idea about sustained oscillations in neuronal networks

o Model with synchronised firing inspired by observations in vitro

0 Extension of product form result and O(n3) gradient learning to networks with
synchronised firing (2007)

o0 Hebbian and reinforcement learning algorithms
o Analytical annealing — Links to the Ising Model of Statistical Mechanics

o New ongoing chapter in queuing network theory now called “G-networks”
extending the RNN

otmks Wlth the Chemlcal Master Equations, Gene Regulatory Networks,

— P I
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Model Extensions: Synchronous Firing

(i, 7,m) is the probability that when ¢ fires, then if j is excited it will also fire, resulting in an exci-
tatory spike being sent to cell . This synchronous behaviour between ¢ and j§ can easily be extended
to an arbitrary number of cells. Indeed, we could have a sequence of cells j;. ... .jn41.7n42 such that
Q(diFit1, Jigz) = 1 for 1 < ¢ < n. In this case, if cells j; and jo are excited, then eventually all the cells
J1e e s dng1s dngz Will fire. Thus the generalised RNN model we have described can be used to model some
quite general forms of synchronised firing.

2 Network behaviour in steady-state

Let the state of the network as a whole be denoted by k(1) = [k (#), ka(f), ..., Ex(t)]. With the assumptions
that have been made about Poisson arrivals, exponential firing times, and with the given probabilities
of apikes going from one cell to another, the system state is a continmons time Markow chain. As a
consequence, the probability distribution of the system state {ki#):# = 0} satisfies a set of Chapman-
Kolmogorov eqguations. Let us use the following vectors to denote specific values of the network state,
where all of these vectors’ values must be non-negative:

kE=T[ki, ..., kN]
S PSR SOVEE TR Sy
= [y oy B — 1. e, Een]
g;;— — [kl,..., e+ 1,y hy— 1, ey k]
Eft =T, ooy i 1y dey 1, o, ]
= = [y b Ly By 1y o — 1, .

Ziim

et
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Synchronous Firing: Solution

If the steady-state distribution wi{k) = tlinch [E(t) = k] exists, it satisfy the Chapman-Kolmogorow

equations given in steadyv-state:

ra'l
(k) > [AGE) + (M) + i) lig 0y ] =
i—1

Z {w () redt(0) + 7 () AG) Loy + 7 () AG)

o~
+ Z [ ra ( i)+ ZLQ(iJst) Lir,y=o01
—+ T (E;;_'_) P (4.4) + {E:_} rip (i, jjl{’ej=“}
N
—|—Z?r (;_c-;.-; )r.,;Q(i,j, m}l{km;"ﬂ}] } (2)
m=1

The following is an application of a result earlier shown in [7].

Theorem: Let where A (i) and AT (i), i = 1,...N be given by the following system of equations

rata rat)
AT = A + S raslp () + S @G, m) (3)

=1 =1

At(i) = Zf‘;q_,p (7, 1) + ZZqumer[J L i) + A(E) (4)

F=lm=1
wlrere
g: = AT (1)) (i + AT (7)) (5)
If o unigue non-negative solution {A" (&), AT(i)} exists for the non-linear system of equations (3), (4), (5)
such that g; == 1 We fthen:

N
miky=1]0Q —a) e (6)
=1
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An Application for the RNN-SI

Decentralised Optimisation
For Emergency Real-Time Decisions

Work Funded by
- British Aerospace and the EPSRC
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OVERVIEW

e Problem Description
e Optimisation Examples
e Solution Approaches
e Proposed Approach

e The Random Neural Network (RNN) with
Synchronised Interactions

e Gradient Descent Supervised Learning for the
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Problem Description

e Optimize a global desirable goal function
under Emergency Conditions

— Preferably no central control or distributed
coordination - Distributed Decision Making

— Real-time - Fast Decision Making

— Complex Problems = Effective Solutions that are
Close to the Optimum

— Uncertain environments = Robustness to
Variations in the Data

Imperial College
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< N, incidents take place at given locations
= With |, injured at incident |
e The N emergency units must be dispatched to the incidents so as
to optlmlse the response, given
- The capacity C, of each emergency unit |
- The estimated time T; for unit i to reach incident |

Imperial College
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The initial locations of the N, emergency units (ambulances), and
their capacities C; are known to all of the emergency units

e When the |nC|dent occurs, the N, incidents, their locations, and the
values of | injured at |nC|dentj, are broadcast to all emergency

units; thus estimated times T; for unit I to reach incident ] become
known to all

= Each of the N, number of emergency units should then decide

individually and * ‘globally optimally” which incident they should
attend to so as to optimise the response

Imperial College
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= N, incidents take place at given locations
= With |, injured at incident .
 The N emergency units must be dispatched to the incidents so as
to optlmlse the response, given:
- The capacity C, of each emergency unit |
- The estimated round trip time T;; for unit i to incident |
Imperial College



= Ambulances make more than one trip, until no
Injured are left behind

= The ambulances deliver the injured to the central
location

Imperg} eellederoute k. ambulance i goes to only one
mcident



Formulation with Binary Variables

The response time for the injured collected on the k;-th route of
unit 1 is:

We need to find an allocation matrix x with elements x;, =1 If unit
i is allocated to incident j at the k; route and 0 otherwise,
which minimises f(X) subject to a set of constraints:

Ny Np K Neg Ny K

min f(z) = > 5> Th, —NLZZZi

=1 5=1k;=1 i—1l3=1k;=11=

-I:E_Ik,E{D- 1}' knd js j- k:
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How to select the K;’s
It is sufficient to assume that
K =KEE
where K; . is the approximate rounded number of routes for unit i calculated
when the linear relaxation of the problem is solved
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Problem Formulation in Integer Variables

Given a set of allocations for unit | the optimal
way to fulfill its schedule is to visit the
Incidents starting from the closest and

Imperial College
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Example Problems(2)

An Example

Assume that N,=3 and we have the following
response times and allocations for unit I.

Til Ti2 Ti3 Xil Xi2 Xi3

3 2 4 2 = 1

To=T, +2T+ 3T, =Tip(1+...+X,)=T, X, (Xj,+1)/2
T1=(BTip+Ti)+(3Tp+2T;)=(T +2T ) +3T;,*2 = T Xi3 (Xig+1)/2+T X, X,y

T3=3T+2T; +Ti3= + X X3 Tipt TipXip X1 + T3 X3 (X3 +1)/2
Imperial College



Available Heuristic Solution Techniques

Simulated Annealing and Other Search Techniques - long
computational time, optimum can be attained

Hopfield Network - short computational time, unlikely to find
optimum

Market/Trading Mechanisms - fast, but would require central
decision element or a priori allocation, or coordination
between agents

Coalition formation — would require a priori allocations or
coalitions, or coordination between agents to form coalitions

Distributed Constraint Optimization (DCOP) — would require
coordination among the agents
perial Collec
pndon




Proposed Novel Approach

A Provide a tool that acts as an “oracle” for decision
making to each of the distinct and uncoordinated
agents so that they take the same and non-conflicting
decision if prowded with the same or similar information

O The oracle is “trained” with instances of optimal
decisions in the same physical context as the disaster

O Each agent uses the tool separately and receives
advice as if all agents had been coordinated

O Methodology: Learning Random Neural Networks with
Synchronised Interactions

O Benefits: fast and decentralised decision making, quasi
optimal solutions, robust to small variations in data

O Research Novelty: the Learning Model, and the
= Approach to the Problem

; _Imperlal College
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The RNN with Synchronised Interactions
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The RNN with Synchronised Interactions
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Theorem [1]:  Let where A (i) and A7), ¢ = 1,...N be given by the following
system of equations

A~ fz‘]—i[’z"]—l—qu w7, z',l—|—z w (7. i)ali, m)]

Zq_,u1+f3 z]+ZZg,{,qmu1 (7,m)alm, i) + Ald)

=1 a=1lm=1
where
g = A(@)/ (e + A ()
If a unigue non-negative solution {A~(7). A\*(:)} exists for the non-linear system of
equations (1), (2), (3) such that q; = 1 Ve then:

(k) = Hfl — qi) g (4)
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~ London ‘




i

i\
= wy(u.v) — 0>, eila— v

v _ Y% s
PAPTEE L AN ¢ 2 l'r_'i"tl'_:'l:‘__'u;.l"_] { ..}

)
1!.-‘.1;_,n+1f._'u.~ v) = "L'—-‘.i:,nf..“! v) — ﬂﬁl-wfu v)

— = (u 1‘) (I — WJ_
Imperial College

(6)

lLondon



Gradient Descent Supervised Learning

e Steps of the gradient descent learning algorithm
1. Initialise the excitation-inhibition matrices W* = {w*(i,j))}, W-= {w-
(i,))} and the synchronisation matrix A= {a(i,j)}

2. For a particular pattern X, initialise the parameters A, and A, as
well as the desired output y,

3. Solve the system of non-linear equations (1)-(3) based on the
above values

4. Using the values for g, obtained solve the 3 linear equations (6)
for the weights w*(u,v), w-(u,v) and a(u,v) where y*(u,v), y (u,v)
and y?%(u,v) are functions of known parameters

5. Exploiting the results from Steps 3 and 4, update the weight
matrices W+*, W- and A using the general equation (5)

6. Repeat steps 2,3,4,5 until convergence to a stopping criterion

Imperial College
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Percentage of feasible solutions
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Summary of the Approach

Off-line learning is used to “train” a neural network so as to
serve as an “Oracle” providing fast, distributed, consistent and
accurate response to an optimisation problem that would
normally be NP-hard and therefore not solvable in real-time

The trained neural network is given to all agents (or emergency
units).
When the emergency happens, identical information about the

emergency (whereabouts of the incidents, estimate of the
number of victims) is broadcast to all agents

Each individual agent uses its Oracle to obtain fast, distributed,
and consistent decisions

Since all agents have the same “Oracle”, if they have the same
iInformation there will be no conflicts in their decisions

The approach should be robust to small uncertainties in
parameters: i.e. small errors in the data that is broadcast, or
small differences between the data received by different agents

Imperial College



Further Work

— Investigate the robustness of the approach to errors in the data,
and to differences between the data received by different
agents — both theoretically and numerically

— Study different cost functions that may better reflect the needs
of the application

— Integrate the approach into the RT4 simulators and vignettes -
ROBOCUP and BES

— Research on decisions that are composed of multiple stages -
e.g. not just the allocation of the ambulance but also the route
It must take

— Consider more realistic “error functions” for the RNNSI .. Not just
guadratic

— Research on coupled or synchronised decisions

— Study other methods for distributed decision making such as
auctions, coalitions .. and compare the results with this work

Imperial College



Further Work

Especially for the Multistage Problem

e Examine the relationship of the two formulations to understand
when one formulation is better than the other.

e Develop real-time heuristic algorithms (e.g. maximum
execution time 1s)

e Device partitioning methods so that the problem can be
divided into smaller easier to solve problems

e Develop distributed algorithms and compare the performance
(speed, efficiency) with the optimal

= Test the performance of the RNNSI learning algorithm on the
particular problem

Imperial College



G-Networks and Gene Reqgulatory
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Steady-state solution of probabilistic gene regulatory networks

Erol Gelenbe™®
Department of Electrical and Electronic Engineering, Imperial College, London SW7 2BT, United Kingdom

{Received 27 February 2007: revised manuscript received 10 July 2007)

We introduce a probability model for gene regulatory networks, based on a system of Chapman-Kolmogorov
equations that represent the dynamics of the concentration levels of each agent in the network. This unifying
approach includes the representation of excitatory and inhibitory interactions between agenis. second-order
interactions which allow any two agents to jointly act on other agents, and Boolean dependencies between
agents. The probability model represents the concentration or quantity of each agent, and we obtain the
equilibrium solution for the joint probability distribution of each of the concentrations. The result is an exact
solution in “product form,” where the joint equilibrium probability distribution of the concentration for each
gene 15 the product of the marginal distribution for each of the concentrations. The analysis we present yields
the probability distribution of the concentration or quantity of all of the agents in a network that includes both
logical dependencies and excitatory-inhibitory relationships between agents.

DOIL: XXXX PACS number(s): 87.16.Ac, 87.16.Yc, 87.17.—d
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Rene’ Thomas’ web page:

““Most biological regulatory systems involve complex networks of interactions.
Theoretical modelling, together with simulations and computational
approaches, provides a useful framework for integrating data and gaining
insights into the dynamical and functional properties of such networks.

In this perspective, a major aim of the research is to contribute to the
understanding of how regulatory mechanisms at various scales (e.g.
molecular, cellular and intercellular) act synergistically or competitively to
achieve degrees of regulation not attainable by one mechanism alone.

Key issues are the variety of attractors possible for a network, the nature of
transition states and transition dynamics, and the role of the network in
emergent behaviour.

These issues are examined in terms of systems of differential equations, automata
networks and probabilistic models."

Imperial College



e A set of nodes representing “genes”

e Associated with each node, a non-negative real or

Integer number representing the “level of concentration”
of the gene

Directed arcs between nodes representing the
interactions between genes

Arcs are labeled with {+,-}/{excitation,inhibition}
Arcs are also labeled with thresholds, i.e.

ulx) 2> [VI(Y)

+,Z
[u] activates [v] If x>z

Imperial College



e Arcs are also labeled with thresholds, i.e.

[ulx) > [VI(Y)
-
If [u] is active, it [u] activates [v] If x>z

Dynamics:

A node is “active” if all of its predecessors with excitation conditions are also active

It is inactive if at least one of its predecessors with excitation condition is inactive, or when one of its
predecessors with inhibition condition is active

Synchronous or asynchronous time may determine and change the state of each node sequentially

Concentration levels:

We may also label nodes with concentration levels which themselves vary with the dynamics
In this case we are not just interested in the “activation” but also in the “level of activation”

Imperial College



Probability Model

< Notation: Agents or Genes {1, ..., n}, tis time
K@) = (K (1), ..., K ()) are the concentration levels of the “genes™
Xy ..., X, are the activation thresholds of the “genes”
Gene j is active if K; (t) > x; (t)
If a gene or node is “active” it may contribute to activate or disactivate any one of its successors
More generally we would like to represent all Boolean dependencies between agents

As we consider continuous time, it is reasonable to assume dynamics where “one thing happens at
a time” in some very small interval of time [t, t+At]

We develop a formalism that allows us to write equations for the probabilities

P[K,t] = Probability[ K(t) = K ] Initial conditions at t=0 ]

P[A(t) = A ] Initial conditions at t=0]

Imperial College
London




The G-Network

¢ The Ky{t) 0. These are integer valued random variables which represent the concentration a1
quantity of the agents ¢ af time ¢ > (),

# Ay > 0 18 a real number represanting the rate af which agent ¢ 18 bemg replenished from some
external souree; similarly A; > 0 1s the rate af which agent ¢ 1s being depleted, provided that

agent ¢ 1s present In some concentration,

# The r, > 0 are real mumbers representing the activity rates of each agent ¢, provided again that
the agent 15 present In scme non-zero amount. [n precise terms, A, Ay, #y are the parameters
of exponential distnbutions, and Ay, A are the arrival rates of imndependent Polsson processes
of signals which, respectively, increase or decrease the level of the variable Ki(t). Similarly 1, is
the average time between suceessive interactions of agent § with other agents.

= -

Imperial College
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o The parameter K;(t) represents the activation level of the agent ¢, If K;(¢) > 0 the agent is activated, and
K;(t] can also be used to represent the amount or concentration of agent @ that is present at time £, The
equations (6] represent the case where the agent i is only activated if K;(f) > x; = 1.

¢ Through the parameters A;, the natural replenishment of agent i, for instance via some biochemical
reaction, or via infiltration from an external medium, is being represented.

o The parameters A; in turn represent a deletion of agent 2. Both A; and A; are specific to a single agent
and do not represent inter-agent interactions.

o The parameters r; represent the depletion of agents ¢ as a result of the agents’ interaction with other

agents, or via removal of the agents from the medium being considered through the rates r;d;. Note that
Fi = E;=1[w+|:i1j] +uw (2, ) +E?=1 wld, 1]

o The parameters w (7, 7) and w™ (1, j) represent the replenishment or depletion of agent 7, or the excitation
or inhibition effect, as a result of agent 7.

o Finally, the parameters wfi, 7, [} represent the excitation/activation of agent [ through the effect of  and
7, or the rate of increase of the amount of [ through the effect of 7. ;.

~ Thus the G-network will represent hoth the mnter-agent relations with respeet to activations, and /or the amounts
~ or concentrations of the agents and the manner in which this affects their interactions and activation.

Imperial Lonege
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G-Network Dynamics and Stationary Solution

dPik,t)
et

Y [Pk o6k ride) + AP(E— e L[k > 0] — P(k A+ 1> 0]00e+ )

=]

+ 3 [k +1 2 2Pk + e — ep )1 [y = 0™ (i) + Plk+ e+ eg tjw(ig) (6]
=1

mn

+ 3 Pl eot ey —ep t)[ke+ 12wk + ey = ml{uld, g, 0) +w(i i) ] ]
=1

Let P(k) = hmg_. ., Pk, ¢} and consider the equations (6) in which we have set 2, =1, i = 1, ... .5
In other words, as long as there 1= at least one agent of type §, agent ¢ 12 activated. Let us introduce
the term: . o . o

Ay +E_f_1 i wt I:jj 'i':] + E_’?J_i ﬂ'jﬂ'lw[:.'i':l E:-‘:'
e A 4 E;I_1 f.!'j'ﬂ'-"_l:.iis 'i] +E;J_1 IEI'I'H'-’[L 'i:-.'i']]
which represents the probability that agent ¢ 1s activated.

hi=1. ...n (T}

ge = min|l,

Theorem 1 Consider the case where 3y = 1, ¢ = 1. ... ,n». For any subset I © {1, ... .n} such that
am = 1for each m I, and I = {my, .. mm}:

= Pl =kn) = auril —gm), and (8)

= Pl oo Koy = by okmy ) = TG (1 — g, (9)

* Theorem 2 If all 2, = 1, the salution of (8) with z = (1, ... ,1) as provided by (7}, (0), (1) exists

and 12 unique.

B W™ W W WW W B W

——
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Logical Interactions of Agents

o Introduce a set of “dummy agents" 4y, s, ... . A, that act as intermediaries hetween the set of agents a.

o ay acts upon Ay, (as. Ay) act upon Ay and so on. Finally (a,.A4,-1) act upon 4,. and A, acts upon
agent [ in an excitatory manner with wtid,,[j=1.

o Furthermore we set Ay = Ay, =0.ry, =1for 1< s< o, wiag,a,4s) =1 and wia,, A,_1.A.) =1 for
s=4, .o

¢ We also introduce dummy agents By, ..., By so that {by) acts upon By in an excitatory manner with
whiby, By) = 1, {by) acts upon By similarly, and so on, and bg acts upon By in an excitatory manner
with By with wt (b, Bs) = 1.

o Then each B, acts upon agent [ in an inhibifory manner with w™(B.,[j =+, 1< s < 4,
o Weset Ap, =Ap, =0, rg, =1for1<s< 4.

Agenty= 1, “ﬂ'ﬁ"“m)]f\[“ (At |
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- London ‘
0nc




Obtaining the Complement - Exact Approach

= U {TIA; IT[not A]}

Turning to expression (7], we see that for any g the term p; = [1 — ¢ is:

L vt A= M+ T e () - w T T e @l 5) — gyre(l 9] (33)
o ¥ A +Ej_1 gy (3, 1) + 207, 1y qru(ld, )] ’

MNote that we would like to have an agent, say Agent., , whose state is the complement of agent Agent; so that p;
1= the stationary distribution that Agent., is activated. Thus we require that the parameters in the expression
(33) have the following properties:

It Agent; has, in the same network, a complementary agent A_., then:

g = L1 620 + T, iy AL D)
CORAH L+ XL g () + Xy, 1y 0L G)

with

(1) Li=r+X = A (33)
(1) @Yjd) =w(jd) —w (j,i) 20 for anyj+#i
(1T Q7 (5,1 =w"(3,i1) for any j+i
(V) [E,i,j]}ﬂ#w[, i)=0 foranyl.j+1
(V) w(li,j)=0=w(l,j,i)=0 foranyl,j+1i
= VIV rm+ X —A =0

I =070 =w(j0) - w(i3) forll j #1

Imperlal College 3
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Toy Example of four agents {A;,A{,A5,Az}
A; INNIDIS [A 1 1)mods @NA Agigymodal

Interpretation 1: g= 1/(1+29)= 0.5
Interpretation 2: q = (1-g)(1-q)= 0.382

Thus the “semantics” we associate with a regulatory
network model has to be precisely indicated so as to
derive the appropriate probabilistic

Imperial Collegé' :
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Computing the Logical Dependencies in
Gene Regulatory Networks

Consider the Boolean function F:[0,1]*—[0,1] in CNF,
written as the conjunction of disjoint terms

F=vr, (32)

u=l

where we have the following:
(1) A term 1s written as 7,=X,; A+ aX,, with X, being
cither B, or B, =-B,,

Theorem 5. For any expression in CNF (32), there exists a
G network with a set of agents A, which contains the agent
F. the agents {ay.....a,s and their complemenis
{a.1.... a4 as well as dummy agents {A:1=u=2%1
=s=a}, such that for gp=lim,_, P[Br{i}=1] is given b
(33).

Before we detail the proof let us indicate that this result
states that, given a specified Boolean dependency betwee
agents of a regulatory network, one can use the G-network
model to represent these Boolean dependencies. Since the

regulatory network itself 1s probabilistic, these Boolean de

ties of the state of the agents, 1.e., these probabilities will be
are consistent with the Boolean dependencies that have bee
given.

Proof of Theorem 5. From Sec. IV A we know that

QF=E ]._[ I::1'.::|I!,1_.[ [l_qaa]!

u=l s=Y, e,

-
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Electronic Network <->

o Very Lower Power Ultrafast “Pseudo-Digital” Electronics

o Network of interconnected probabilistic circuits

0 Only pulsed signals with negative or positive polarity

o Integrate and fire circuit = Neuron [RC circuit at input,
followed by transistor, followed by monostable]

o When RC circuit’s output voltage exceeds a threshold, the
“Neuron’s” output pulse train is a sequence of pulses at the
characteristic spiking rate (u) of the neuron

0 Frequency dividers (eg flip flops) create appropriate pulse
trains that emulate the appropriate neural network weights

o Threshold circuits (eg biased diodes and inverters) create

' Imperial College
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e

b B e

—_—

Imperial College

London



Vision: The World’s Economy will be governed by
Economic Transactions in Cognitive Networks

Auction: Formal Mechanism that Governs Decisions for
Economic Transactions or Resource Allocation and
Exchange

Cognitive Network: A Computer-Communication Network
where Resource Allocation including Routing is Achieved by

—
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Vision

The World’s Economy Is a “Chain Reaction™ of
Economic Transactions

, are
Agents with Interchangeable Roles

Computer Networks are the of the
World Economy

- Networks are Becoming

C—
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Auctions

Cognitive
Networks

 Imperial Collegé E

FLondon




Auctions have Many Buyers =
Leading to Interesting Research Ques

— e

ay oy
b e B .--.--v ) |

el

- Coc @Frnate " nd selling (cartels, trusts)
- Rational Bidders = =
- Adversarial Behawours (ccm@etlters)

- Learning from collective behaviour: observmg the buyers and
sellers -

inl

- Modelling collective behaviour
- Effect of Network QoS on Economic Considerations
- Malicious Behaviours & Protecting the Information Infrastructure

Imperial College
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Modeling Auctions

eDecision Framework: An auction System

<The value of the good for the bidders is a r.v. V, whose prob. distribution
p(v)=P[V=v], which may be unknown to the seller

<Buyers will not bid above the value they associate with the good, but
V=infinity is possible (.. | am willing to buy it at any price ..)

=The seller observes the bids, and after each bid waits for some time
before accepting the bid; a new bid may arrive in the meanwhile, and
the process repeats itself

How and when should the seller accept the bid?

=\What is the probabilistic outcome of such a system, in terms of the
expected price that the good brings in, or the time it takes to sell the
good, or the income generated per unit time?

How can the seller learn the value of the good and act accordingly?
=How can bidders also adapt their behaviour to get the best price?
.-How can buyers take advantage of multiple Networked Auctions?

...-—-_-_.-.
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The Secretary or Sultan’s Dowry Problem .. Related but Different
Martin Gardner, Scientific American, 1960:

A sequence of candidates show up, each of value or quality C,, C,, ..
, C,» .- Which are r.v.’s

=The buyer’s purpose is to select one of these whose quality is close to
the maximum quality

=The buyer observes the sequence for a finite time, hoping to wait long
enough to select the best .. and selects the k-th, after which the
decision is irrevocable

<\What is the probability that the one selected is the optimum?

=The outcome will select the best with probability 1/e

fY._S. C_how et al., Israel J. Math. 2, 81-90, 1964

f'- .S.R. Finc “Optimal stopping constants”, in Mathematical Constants,
V. Press, 361-363, 2003
Imperial College
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An Auction

For a fixed value v of the “good” we have a state space {0,1, ... ,V,A,,
..., A/} where | represents the value that is attained after the i-th bid,
while A is the state entered after the i-th bid is accepted - the O-state
IS a “rest state” after a particular auction is complete

The random process representing the current state of, or value
attained by, the auction is Y, ; alternately X is the index of the bid
and f(Y,) may be the monetary value

O<t,<...<t,<...,are instants at which the auction starts, with auction
e_nc]:l times at t +E <t ., when the buyer accepts the offer, and rest
timesR ==t
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Increments offered by successive bidders within any one auction are random
variables X,, ... , X, ... that may depend on the auction number n .. X etc.

The time between the arrival of successive bids are r.v. {T }

After bid “ni” is received, the seller will wait some “think” or decision time D, ,
after which it will accept the bid if D,; < T, ;,,, or consider the next bid if D >
T,is; UNless a new bid arrives

n,i+

If there is reneging or balking, the most recent bid may be revoked after some
time B, if B, <D,;. If the bid is revoked by the highest bidder, then the next
highest un-revoked bid becomes the valid bid, and may also be reneged,

etc.
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The price attained during the n-th auction will then be the r.v.
Qn = 2:N(n)i=1 X

ni

Furthermore bids may be a function of the value attained by the good during
the preceding bid, e.g.

X oF K+1™ g n, K+1(Zki:1 Xn i)
or a function of the value V_ of the good as well, e.g.

Xi k+1= 9 1 ke2(Un 5 2Ky X, 1), or more specifically

Xn, k+1= 9 0 ke1{Up = 2820 X400
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Analytical Results

Bids arrive to an auction according to a Poisson process; 1/ A is the average
time between successive bids

- 1/6 is the average time that the seller waits before accepting a bid
(possible decision variable) — the corresponding time is an exponentially
distributed r.v.

- 1/r is the average rest period after the end of an auction and before the
next auction restarts. Without loss of generality r=1; this time can have a
general distribution

- Assume there is no balking or reneging

- The value of the good is fixed to a given r.v. V with arbitrary distribution
function, identical at each successive auction

- Then after analysis

: E[ Sale price | V=v ] = [1-pV]/[1-p] <V, p = A/ (A+)
_,: — E[ Income per unit time ]
' : = (1- E[pY] ) Ar(A+3)/(Ar+Ad+rd)
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The results generalize to iid bid sizes, and to other models in which a
Markov renewal structure can be exploited

E[Sale price| V=V ]=E[X] [1-p"]/[1-p] < VE[X],
p = M (A+0)
E[Sale price| V=V ]=[1-p¥]/[1-p] =" - X,
E[Income per unit time]= E[X](1-E[pV]) Ar(A+8)/(Ar+Ad+rd)

For the Vickrey auction where the good is sold to the highest bidder at
the second highest price:

E[Sale price| V=V ]=E[X] p{[1-pV }/[1-p]+6/\}
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Auctions with a minimum sale price s:
E[Sale price| V=V ]=E[X] p {A[1-pV5]/5 + S}
where p = AJ (At D)

When the un-successful bidder re-bids with probability p and new
bidders arive at rate y:

A=y+Ap[®-1)/ ®=v][l-p+p/ D]
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Smart Price Formation
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Smart Price Formation by Watching the
Market

S, = E[ Sale price] V=v]<vVv

Sy =[1-p¥}/[1-p]

S=E[Sale price]

. where

= (1-E[p"]/[1-p] < E[V]

If buyers are careful, then & will be larger
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Smart Price Formation

If the bidders select value distribution such as
P(V=v)= a"-1(1-a), v>0, o<1,
Then E[V]= 1/(1-a), E[pV]=p(1-0)/(1—ap),
S=1/(1-pa) E[V]=S.e

e>l:p=¢e(S-1)(eS-1)<1
Once ¢ and either E[V] or S are known,

the bidding rate or the decision rate, or their
relationship, are set via p=1/(1+0/A)
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o k(t) = (k4(t), ... , ky(t)) where ki(t) is theprlce currently attained at auction i
* ki(t) > 0 implies that n,(t)>0

* n;(t)=0 implies that k;(t)=0,

» While when n,(t)>0 then k;(t)>0

» The Mobile Bidder Model — a bidder at auction i who does not have an outstanding (made
but not yet accepted) bid may move from auction i to auction j with probability P(i,j) or
leave the auction system with probability P(i,N+1)
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Networked Auctions

Y=(y4 ..., Y ) Where v, is the external arrival rate of bidders at auction i

e u,; >0; the departure rate of bidders from auction i is:
w(y.x) = (y-1) ;, if x>0
W (Y,0) = yu,

= The value of the good at auction i is the r.v. V,with y, (X) = P[V, > x] and
v, (0)=1

= B, >0; the departure rate of bidders from auction i is:
B i(y.¥) = (y-1) By, (%), if x>0
B (v.0) =y v, (0)

= The rate at which bids are accepted at auction | is §,

‘=Rates are inverses of average values of exponentially distributed iid random

—
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Let us introduce the following notation. e; will denote the n — vector all
of whose elements are zero, except for the ¢ — th element which 1= +1. and let
n;._" = n—+ ez, n;, = n — e provided that n; = 0, ﬂ._;_;_ = n +e; —e; provided that
n; = 0, and I.:_;_" =k +e; and & =k — e; provided that &; = 0.

The Chapman-Kolmogorov (C-IK ) equations for the syvstem are:

d I ok
p(?;; . t) = ; { yapin, ,k,t)1[n. = 0] (41
+ Fa(ma — L)k — V)pin, by ,t)1[ne = 0, ke = 2]
+ Gy (O)ngpin, by 1)1k, = 1] (42

+ e Pli, Dp(nd  kot)(ne [k = 0] + (ne + 1)1[ke = 0]

Fatil
+ D e Pi, j)pindy T k)1 [ny = 0,k = 0]
=1

atl
+ 3 paing + V)P, Gpind ™, ko) 1k = 0]
=1

+ f: dep(n, b+ xeg)1[k, = 0]1[n, = 0] }

=1
o

— Z {7re + [(8¢ + paime — 1)) [ne = 0, ke = 0]

=1
+ Gl ke )(ne — 1)]1[ne = 0,k = 0]
+ (Fane + pame)[ne = 0,k = 0] }pin, k. t)
llllrf‘-l AN ‘-\FII‘-EH
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dp(n,t)

a'll
At — E :{Tip'{ﬂ-a_:tjl[ﬂi = D]
2=1

+ peamng P, D}Pfﬂ':—rt}

'l
+ 3 [penaPlif)p(nd T 6)1[ny = 0]
=1

N
—I—Z I — (e + pra(me — 1)1[ne = O] )p(n.t)
i=1

+ _LL-:.PI{E’ Dpint . ke =0, 1)

_I_Z.F:'iﬂipii'rj::lplfﬂij :k‘!- = 0 tjl[ﬂ'.? = 1:.]
=1

— papin, ky = 0,8)1[n, = 0]}
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Under the the Active Hidders A ssumption, us suppose that that p(re, oy = 0,¢) ==
plre, ) for anv n whose ¢ — th element n; = 0. We are thus assuming that the
probability that there are no bids when there are bidders at an auction is very
small compared to the overall probability of the same state. The equations (48)
then become:

dp(n,t) ™
g =2 L rep(n 01 [ne > 0 (49)
+ pama P (i, D)pint. t) (50)

ol
+ Z [_,u..,_ﬂ.,,P{-i!'.,jjp(ﬂ;'_;_ LE)1[ry; = O]
=1

— [ e + paine — 1)]pin, t)1[n: > 0]}

Result The stationary solution of equations (458) under the Active Hidders As-

sumpition obtained by setting E‘sz—’gl = 0 for all 2; = 0 1s given by:

Fatl _E7 -

e e e
| == I I = o1

i=1

where [T, — f:— and the A, are the solution of the system of linear eguations:
M
Ay =~ + E A; Pi(q,2), + =1, ... N (52
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i
plkim) = [ mikn,), where
=1

L
i1ng — 1
Patkeyfrg) = H[ﬂlmﬁﬂ[ff,é:#:.[:[um - i]

i=L

= By
ﬂ.'q!h —1 I:!'Ii —_ 1:| —1 oy
!'H [ 1—'— E I I 1 .

where we have osed the fest tkat the conditional probabilities sum to one.

Proot The proct is strajghtforwand . and is besed on substituoting (7d] in the egus
tloms [7d]. Note also that py0|0] = 1.
Finally, we can write the steady-state sclution uoder the ABA when bids and
sales ure frequoent osing [74) &
pin k) = pll|nlpn) (e
L o BiWa—aing — 1)
a1 e v ) ey o ey y "

a=L
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I- The auction number

V_i: Item’s value

S;; : Most recently observed
selling price at auction |

S, ¢ S,,a + S;(1-0): Historical
average of selling price

P_i: current bid

R_i= D_i+G | : effective time for
reaching the seller

D i: seller’s decision time

G_i: CPN goal

= (Vi _Si)+/Ri

- Pi =,
= Z(VI = Si)+ /Ri
i=1
SBP2: D = (Vi_Si) *(Vi_Pi) /RI

Z(Vi = Si)+ *(Vi = Pi)+/Ri
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The World’s Economy is a “Chain Reaction™ of
Electronic Transactions

Prices are Formed by feedback between
markets and individual electronic age

Queumg network type models provide insight
Into price formation
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G-Networks Provide Insight into a Wide
Variety of Real Systems, such as:

- Communication Networks with Controls
- Load Balancing in Distributed Systems

- Communication in Neuronal Ensembles
- Communication in Gene Networks

- Chemical Reactions

._;;They are also a new tool to study the

worked Economy
Imperlal College
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