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Outline

• Origin of G-Networks: the RNN
• Biological Inspiration for the RNN
• Applications

– modeling biological neuronal systems
– texture recognition and segmentation
– image and video compression
– multicast routing
– Network routing (Cognitive Packet Network)

• Gene Regulatory Systems
• Networked Economics: Auctions



Random Spiking Behaviour of Neurons 
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The RNN: A Model of Random Spiking Neurons 

Some biological characteristics that the model should include:
- Action potential “Signals” in the form of spikes
- Excitation-inhibition spikes
- Modeling recurrent networks
- Random delays between spikes
- Conveying information along axons via variable spike rates
- Store and fire behaviour of the soma
- Reduction of neuronal potential after firing
- Possibility of representing axonal delays between neurons
- Arbitrary network topology
- Ability to incorporate different learning algorithms: Hebbian, 

Gradient Descent, Reinforcement Learning, ..
- Synchronised firing patterns
- Logic in neural networks?



Queuing Networks + Stochastic Petri Nets : Exploiting the Analogy 

Discrete state space, typically continuous time, stochastic 
models arising in the study of populations, dams, 
production systems, communication networks ..

oTheoretical foundation for computer and network systems 
performance analysis  

o Open (external Arrivals and Departures), as in Telephony, 
or Closed (Finite Population) as in Compartment Models

o Systems comprised of Customers and Servers
o Theory is over 100 years old and still very active ..
o Big activity at Telecom labs in Europe and the USA, Bell 

Labs, AT&T Labs, IBM Research 
o More than 100,000 papers on the subject ..



Queuing Network <-> Random Neural Network

o Both Open and Closed Systems
o Systems comprised of Customers and Servers
o Servers = Neurons
o Customer = Spike: Arriving to server will increase the queue 

length by +1
o Excitatory spike arriving to neuron will increase its soma’s 

potential by +1
o Service completion (neuron firing) at server (neuron) will 

send out a customer (spike), and reduce queue length by 1
o Inhibitory spike arriving to neuron will decrease its soma’s 

potential by 1
o Spikes (customers) leaving neuron i (server i) will move to 

neuron j (server j) in a probabilistic manner



RNN
Mathematical properties that we have established:

o Product form solution

o Existence and uniqueness of solution and closed form analytical 
solutions for arbitrarily large systems in terms of rational functions of first 
degree polynomials

o Strong inhibition – inhibitory spikes reduce the potential to zero

o The feed-forward RNN is a universal computing element: for any 
bounded continuous function f: Rn −> Rm, and an error ε, there is a FF- 
RNN g such that ||g(x)-f(x)||< ε

 
for all x in Rn

o O(n3) speed for recurrent network’s gradient descent algorithm, and 
O(n2) for feedforward network





Mathematical Model: A “neural” network with n neurons

• Internal State of Neuron i at time t, is an Integer Ki (t) > 0
• Network State at time t is a Vector 

K(t) = (K1 (t), … , Ki (t), … , Kk (t), … , Kn (t))

• If Ki (t)> 0, we say that Neuron i is excited it may fire (in which 
case it will send out a spike)

• Also, if Ki (t)> 0, the Neuron i will fire with probability ri Δt +o(Δt)    
in the interval [t,t+Δt]

• If Ki (t)=0, the Neuron cannot fire at t+

When Neuron i fires at time t:
- It sends a spike to some Neuron j, with probability pij
- Its internal state changes Ki (t+) = Ki (t) - 1



Mathematical Model: A “neural” network with n neurons

The arriving spike at Neuron j is an:
- Excitatory Spike w.p. pij

+

- Inhibitory Spike w.p. pij 
-

- pij = pij
+ + pij

- with  Σn
j=1 pij < 1 for all i=1,..,n

From Neuron i to Neuron j:
- Excitatory Weight or Rate is wij

+ = ri pij
+

- Inhibitory Weight or Rate is wij
- = ri pij

-

- Total Firing Rate is ri = Σn
j=1 (wij

+ + wij
–)

To Neuron i, from Outside the Network
- External Excitatory Spikes arrive at rate Λi

- External Inhibitory Spikes arrive at rate λi



State Equations & Their Solution
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Random Neural Network

• Neurons exchange Excitatory and Inhibitory Spikes (Signals)
• Inter-neuronal Weights are Replaced by Firing Rates
• Neuron Excitation Probabilities obtained from Non-Linear 

State Equations
• Steady-State Probability is Product of Marginal Probabilities
• Separability of the Stationary Solution based on Neuron 

Excitation Probabilities
• Existence and Uniqueness of Solutions for Recurrent Network
• Learning Algorithms for Recurrent Network are O(n3)
• Multiple Classes (1998) and Multiple Class Learning (2002)



Sample of Publications
• E. Gelenbe. Random neural networks with negative and positive signals and 

product form solution. Neural Computation, 2:239-247, Feburary 1990. 
• E. Gelenbe. Learning in the recurrent random neural network. Neural 

Computation, 5:154-164, 1993. 
• E. Gelenbe and C. Cramer. Oscillatory corthico-thalamic response to 

somatosensory input. Biosystems, 48(1-3):67-75, November 1998. 
• E. Gelenbe and J.M. Fourneau. Random neural networks with multiple classes 

of signals. Neural Computation, 11(4):953-963, May 1999. 
• E. Gelenbe, Z.H. Mao, and Y.D. Li. Function approximation with spiked random 

networks. IEEE Transactitons on Neural Networks, 10(1):3-9, January 1999. 
• E. Gelenbe and K. Hussain. Learning in the multiple class random neural 

network. IEEE Transactions on Neural Networks, 13(6):1257-1267, November 
2002. 

• E. Gelenbe, T. Koçak, and Rong Wang. Wafer surface reconstruction from top- 
down scanning electron microscope images. Microelectronic Engineering, 
75(2):216-233, August 2004. 

• E. Gelenbe, Z.H. Mao, and Y.D. Li. Function approximation by random neural 
networks with a bounded number of layers. Journal of Differential Equations 
and Dynamical Systems, 12(1-2):143-170, 2004. 

• E. Gelenbe, S. Timotheou. Random Neural Networks with Synchronised 
Interactions. Neural Computation. 2008



Some Applications

• Cortico-Thalamic Response …
• Texture based Image Segmentation
• Image and Video Compression
• Multicast Routing
• CPN Routing



Cortico-Thalamic Oscillatory Response to Somato-Sensory Input
(what does the rat think when you tweak her/his whisker?)

Input from the brain stem (PrV) and response at thalamus (VPM) and cortex (SI), 
reprinted from M.A.L. Nicollelis et al. “Reconstructing the engram: simultaneous, 
multiple site, many single neuron recordings”, Neuron vol. 18, 529-537, 1997



Scientific Objective 
Elucidate Aspects of Observed Brain Oscillations





Building the Network Architecture 
from Physiological Data



Simultaneous Multiple
Cell Recordings
(Nicollelis et al., 1997)

Predictions of Calibrated
RNN Mathematical Model
(Gelenbe & Cramer ’98, ’99)

First Step: Comparing Measurements and Theory: 
Calibrated RNN Model and Cortico-Thalamic Oscillations



Gedanken Experiments that cannot be Conducted in Vivo: 
Oscillations Disappear when Signaling 

Delay in Cortex is Decreased

Brain Stem
Input Pulse 
Rate



Gedanken Experiments: Removing Positive Feedback in 
Cortex Eliminates Oscillations in the Thalamus

Brain Stem
Input Pulse 
Rate



When Feedback in Cortex is Dominantly Negative, Cortico- 
Thalamic Oscillations Disappear Altogether

Brain Stem
Input Pulse 
Rate



Summary of Findings Resulting from the 
Model



On to Some CS/EE Applications of the 
Random Neural Network



Building a Practical “Learning” Algorithm: 
Gradient Computation for the Recurrent RNN is O(n3)



Texture Based Object Identification Using the RNN 
US Patent ’99 (E. Gelenbe, Y. Feng)



1) MRI Image Segmentation 



MRI Image Segmentation



Brain Image Segmentation with RNN



Extracting Abnormal Objects from MRI 
Images of the Brain

Extracting Tumors 
from MRI   

T1   and  T2 Images

Separating Healthy
Tissue from Tumor

Simulating and Planning
Gamma Therapy & 

Surgery



2) RNN based Adaptive Video Compression: 
Combining Motion Detection and RNN Still Image 

Compression

RNN



Neural Still Image Compression 
Find RNN R

 
that Minimizes 

|| R(Ι) - Ι
 

|| 
Over a Training Set of Images { Ι

 
}



RNN based Adaptive Video Compression



Original

After decom-
pression







3) Multicast Routing 
Analytical Annealing with the RNN 

similar improvements were obtained for  (a) the Vertex Covering Problem 
(b) the Traveling Salesman Problem

• Finding an 
optimal “many- 
to-many 
communications 
path” in a 
network is 
equivalent to 
finding a Minimal 
Steiner Tree. This is 
an NP-Complete 
problem

• The best purely 
combinatorial 
heuristics are the 
Average Distance 



4) Learning and Reproduction of Colour Textures

• The Multiclass RNN is 
used to Learn Existing

• The same RNN is then 
used as a Relaxation 
Machine to Generate 
the Textures

• The “use” of this 
approach is to store 
textures in a highly 
compressed manner

• Gelenbe & Khaled, IEEE 
Trans. On Neural 
Networks (2002).



• Conventional QoS Goals are extrapolated from Paths, Traffic, 
Delay & Loss Information – this is the “Sufficient Level of 
Information” for Self-Aware Networking

• Smart packets collect path information and dates
• ACK packets return Path, Delay & Loss Information and deposit 

W(K,c,n,D), L(K,c,n,D) at Node c on the return path, entering 
from Node n in Class K

• Smart packets use W(K,c,n,D) and L(K,c,n,D) for decision 
making using Reinforcement Learning

Cognitive Adaptive Routing



Is N the
Destination 
D of the CP

?
YES

N Creates 
ACK

Packet
For CP

1) From CP’s route r, N gets
Shortest Inverse Route R

2) N Stores R in ACK with 
all Dates when CP visited

each node in R

N sends ACK along 
Route R back to the 

Source Node S of the CP

Node S copies Route R 
into all DPs

going to D, until a new
ACK brings a new route R’

NO

Is P a 
CP
?

YES

NO

Is P a
DP 
?

1) N Uses the Data in Mailbox 
to Update the RNN Weights

2) If d is the current date 
at N, node N stores the pair
(N,d) in the CP  

N Computes the q(i) from 
the RNN,  picks largest q(X) 
with X different from Link L,

and sends the CP out from N
along Link X 

Packet P with  
Source S and  
Destination D 

Arrives at Node N
Via Link L

Since P (DP or ACK) contains
its own route R, Node N

Sends Packet P out
From the output Link to 

Its neighboring node 
that comes after N in R

YES
NO

P is thus an ACK
Let T be the current date at N:
1) N copies the date d from P
that corresponds to node N

2) N computes Delay = T-d and
updates its mailbox with Delay  



Goal Based Reinforcement Learning 
in CPN

• The Goal Function to be minimized is selected by the user, e.g. 
G = [1-L]W + L[T+W]

• On-line measurements and probing are used to measure L and W, 
and this information is brought back to the decision points

•
• The value of G is estimated at each decision node and used to 

compute the estimated reward R = 1/G

• The RNN weights are updated using R stores G(u,v) indirectly in the 
RNN which makes a myopic (one step) decision



Routing with Reinforcement Learning using 
the RNN

• Each “neuron” corresponds to the 
choice of an output link in the 
node 

• Fully Recurrent Random Neural 
Network with Excitatory and 
Inhibitory Weights

• Weights are updated with RL
• Existence and Uniqueness of 

solution is guaranteed
• Decision is made by selecting the 

outgoing link which corresponds 
to the neuron whose excitation 
probability is largest



Reinforcement Learning Algorithm

• The decision threshold is the Most Recent Historical 
Value of the Reward

• Recent Reward Rl
If 

then

else

1
1 ,)1( −

− =−+= GRRaaTT lll

jk
n

Rkiwkiw

Rjiwjiw

l

l

≠
−

+←

+←

−−

++

,
2

),(),(

),(),(
ll RT ≤− 1

l

l

Rjiwjiw

jk
n

Rkiwkiw

+←

≠
−

+←

−−

++

),(),(

,
2

),(),(



• Re-normalise all weights

• Compute q = (q1 , … , qn )  from the fixed-point
• Select Decision k such that qk > qi for all i=1, …, n
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CPN Test-Bed Measurements
On-Line Route Discovery by Smart Packets



CPN Test-Bed Measurements
Ongoing Route Discovery by Smart Packets



Route Adaptation without Obstructing Traffic



Packet Round-Trip Delay with Saturating 
Obstructing Traffic at Count 30



Route Adaptation with Saturating 
Obstructing Traffic at Count 30



Packet Round-Trip Delay with Link Failure at Count 40



Packet Round-Trip Delay with Link Failure at Count 40



SP

DP

All

Average Round-Trip Packet Delay 
VS

Percentage of Smart Packets



RNN
Other Extensions to the Mathematical Model

o Model with resets – a node can reactivate its neughbours state if they are 
quiescent .. Idea about sustained oscillations in neuronal networks

o Model with synchronised firing inspired by observations in vitro

o Extension of product form result and O(n3) gradient learning to networks with 
synchronised firing (2007)

o Hebbian and reinforcement learning algorithms

o Analytical annealing – Links to the Ising Model of Statistical Mechanics

o New ongoing chapter in queuing network theory now called “G-networks” 
extending the RNN

o Links with the Chemical Master Equations, Gene Regulatory Networks, 
Predator/Prey Population Models



Model Extensions: Synchronous Firing



Synchronous Firing: Solution



An Application for the RNN-SI 

Decentralised Optimisation
For Emergency Real-Time Decisions

Work Funded by 
British Aerospace and the EPSRC



OVERVIEW

• Problem Description
• Optimisation Examples
• Solution Approaches
• Proposed Approach
• The Random Neural Network (RNN) with 

Synchronised Interactions
• Gradient Descent Supervised Learning for the 

Recurrent RNNSI
• Computational Results
• Discussion
• Future Work



Problem Description

• Optimize a global desirable goal function 
under Emergency Conditions
– Preferably no central control or distributed 

coordination Distributed Decision Making
– Real-time Fast Decision Making
– Complex Problems Effective Solutions that are 

Close to the Optimum
– Uncertain environments Robustness to 

Variations in the Data



• NL incidents take place at given locations
• With Ij injured at incident j
• The NU emergency units must be dispatched to the incidents so as 

to optimise the response, given 
- The capacity Ci of each emergency unit i
- The estimated time Tij for unit i to reach incident j

4

ci =3
5

3

ij
Ij =5

Tij



The initial locations of the NU emergency units (ambulances), and 
their capacities Ci are known to all of the emergency units

• When the incident occurs, the NL incidents, their locations, and the 
values of Ij injured at incident j, are broadcast to all emergency 
units; thus estimated times Tij for unit i to reach incident j become 
known to all

• Each of the NU number of emergency units should then decide 
individually and “globally optimally” which incident they should 
attend to so as to optimise the response 

4

ci =3
5

3

ij
Ij =5

Tij



Formulation

Find an allocation matrix x with elements xij =1 if 
unit i is allocated to incident j and 0 otherwise, 
which

minimises f(x) subject to a set of constraints:

.

This problem is known to be NP-Hard



• NL incidents take place at given locations
• With Ij injured at incident j.
• The NU emergency units must be dispatched to the incidents so as 

to optimise the response, given:
- The capacity Ci of each emergency unit i
- The estimated round trip time Tij for unit i to incident j

j

Ti,NL
ici =3

Ij=2 NL1

Ti,1
Ti,j

How do we deal with the case that the total number of injured is higher 
than the total capacity of the ambulances?



• Ambulances make more than one trip, until no 
injured are left behind

• The ambulances deliver the injured to the central 
location

• At each route ki ambulance i goes to only one 
incident

j

Ti,NL
ici =3

Ij=2
NL1

Ti,1
Ti,j



Formulation with Binary Variables
The response time for the injured collected on the ki -th route of 

unit i is:

We need to find an allocation matrix x with elements xijk(i) =1 if unit 
i is allocated to incident j at the ki route and 0 otherwise, 
which minimises f(x) subject to a set of constraints:

.



How to select the Ki ’s
It is sufficient to assume that 

Ki = Ki_rlr +1
where Ki_rlr is the approximate rounded number of routes for unit i calculated 

when the linear relaxation of the problem is solved



Problem Formulation in Integer Variables

Given a set of allocations for unit i the optimal 
way to fulfill its schedule is to visit the 
incidents starting from the closest and 
finishing with the farthest 
Exploiting this fact it is sufficient to know for 

each unit i the number of routes to each 
incident j. 

xij = number of times unit i collects from 
incident j



Example Problems(2)

An Example
Assume that NL =3 and we have the following 

response times and allocations for unit i.
Ti1 Ti2 Ti3

3 2 4

Xi1 Xi2 Xi3

2 3 1

T2 =Ti2 +2Ti2 + 3Ti2 =Ti2 (1+…+Xi2 )=Ti2 Xi2 (Xi2 +1)/2

T1 =(3Ti2 +Ti1 )+(3Ti2 +2Ti1 )=(Ti1 +2Ti1 )+3Ti2 *2 = Ti1 Xi1 (Xi1 +1)/2+Ti2 Xi2 Xi1

T3 =3Ti2 +2Ti1 +Ti3 = +Xi2 Xi3 Ti2 +Ti2 Xi2 Xi1 +Ti3 Xi3 (Xi3 +1)/2



Available Heuristic Solution Techniques

• Simulated Annealing and Other Search Techniques – long 
computational time, optimum can be attained

• Hopfield Network – short computational time, unlikely to find 
optimum

• Market/Trading Mechanisms – fast, but would require central 
decision element or a priori allocation, or coordination 
between agents

• Coalition formation – would require a priori allocations or 
coalitions, or coordination between agents to form coalitions

• Distributed Constraint Optimization (DCOP) – would require 
coordination among the agents



Proposed Novel Approach

Provide a tool that acts as an “oracle” for decision 
making to each of the distinct and uncoordinated 
agents so that they take the same and non-conflicting 
decision if provided with the same or similar information
The oracle is “trained” with instances of optimal 
decisions in the same physical context as the disaster
Each agent uses the tool separately and receives 
advice as if all agents had been coordinated
Methodology: Learning Random Neural Networks with 
Synchronised Interactions
Benefits: fast and decentralised decision making, quasi 
optimal solutions, robust to small variations in data
Research Novelty: the Learning Model, and the 
Approach to the Problem



The RNN with Synchronised Interactions
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The RNN with Synchronised Interactions
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The RNN with Synchronised Interactions
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The RNNSI: Analytical Solution

According to the Theorem if qi <1 for every i then in steady state 
solution the RNNSI is given by (4)



Gradient Learning for the RNNSI
• The network is presented with input patterns Xk =[Λk ,λk ] and the 

corresponding desired outputs yk.
• The purpose is to find values for the weights w(u,v) so that the cost function 

E is minimized.

• The weights are updated after every pattern using the gradient descent 
rule:

where n denotes the update step, η
 

> 0 is the “learning rate” and the 
partial derivative of the cost function on the right hand side is evaluated 
using the n-th computed values of the weights

• The key step of the computation is the calculation of the
It can be shown that its has the form below and is therefore 
of complexity O(n3)
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Gradient Descent Supervised Learning

• Steps of the gradient descent learning algorithm
1. Initialise the excitation-inhibition matrices W+ = {w+(i,j)}, W- = {w- 

(i,j)} and the synchronisation matrix A = {α(i,j)}
2. For a particular pattern Xk initialise the parameters Λk and λk as 

well as the desired output yk
3. Solve the system of non-linear equations (1)-(3) based on the 

above values
4. Using the values for qik obtained solve the 3 linear equations (6) 

for the weights w+(u,v), w-(u,v) and α(u,v) where γ+(u,v), γ-(u,v) 
and γα(u,v) are functions of known parameters

5. Exploiting the results from Steps 3 and 4, update the weight 
matrices W+, W- and A using the general equation (5)

6. Repeat steps 2,3,4,5 until convergence to a stopping criterion



Learning for the Ambulance Dispatching Problem

Learning
• For each decision variable xij two neurons are 

used: one to represent the “1” and the other the 
“0”.

• We experiment with two different RNNSI 
architectures:

1. Architecture 1 (cases 1-4): Neurons are fully 
interconnected in terms of W+ and W-

2. Architecture 2 (cases 5-8): Neurons excite 
other neurons of the same polarity and 
inhibit neurons of the opposite (see the 
Figure to the right)

• Different cases corresponding to different 
approaches to the A weights

• We train the network with 200 randomly 
generated optimisation problems with varying Ij, the other parameters being constant. The 
optimal solution is computed in each case and 
used to train the RNNSI



200 examples were generated at random to 
test the RNNSI: 
It appears that Architecture 1 is better at saving 
more casualties,
Architecture 2 is closer to the minimum of the 
cost function



Summary of the Approach
• Off-line learning is used to “train” a neural network so as to 

serve as an “Oracle” providing fast, distributed, consistent and 
accurate response to an optimisation problem that would 
normally be NP-hard and therefore not solvable in real-time 

• The trained neural network is given to all agents (or emergency 
units). 

• When the emergency happens, identical information about the 
emergency (whereabouts of the incidents, estimate of the 
number of victims) is broadcast to all agents

• Each individual agent uses its Oracle to obtain fast, distributed, 
and consistent decisions

• Since all agents have the same “Oracle”, if they have the same 
information there will be no conflicts in their decisions

• The approach should be robust to small uncertainties in 
parameters: i.e. small errors in the data that is broadcast, or 
small differences between the data received by different agents



Further Work
– Investigate the robustness of the approach to errors in the data, 

and to differences between the data received by different 
agents – both theoretically and numerically

– Study different cost functions that may better reflect the needs 
of the application

– Integrate the approach into the RT4 simulators and vignettes – 
ROBOCUP and BES

– Research on decisions that are composed of multiple stages – 
e.g. not just the allocation of the ambulance but also the route 
it must take

– Consider more realistic “error functions” for the RNNSI .. Not just 
quadratic

– Research on coupled or synchronised decisions
– Study other methods for distributed decision making such as 

auctions, coalitions .. and compare the results with this work



Further Work

Especially for the Multistage Problem

• Examine the relationship of the two formulations to understand 
when one formulation is better than the other.

• Develop real-time heuristic algorithms (e.g. maximum 
execution time 1s)

• Device partitioning methods so that the problem can be 
divided into smaller easier to solve problems 

• Develop distributed algorithms and compare the performance 
(speed, efficiency) with the optimal 

• Test the performance of the RNNSI learning algorithm on the 
particular problem



G-Networks and Gene Regulatory 
Networks



Outline

Rene’ Thomas’ web page: 

``Most biological regulatory systems involve complex networks of interactions. 
Theoretical modelling, together with simulations and computational 
approaches, provides a useful framework for integrating data and gaining 
insights into the dynamical and functional properties of such networks. 

In this perspective, a major aim of the research is to contribute to the 
understanding of how regulatory mechanisms at various scales (e.g. 
molecular, cellular and intercellular) act synergistically or competitively to 
achieve degrees of regulation not attainable by one mechanism alone. 

Key issues are the variety of attractors possible for a network, the nature of 
transition states and transition dynamics, and the role of the network in 
emergent behaviour. 

These issues are examined in terms of systems of differential equations, automata 
networks and probabilistic models.''



A Regulatory Network

• A set of nodes representing “genes”
• Associated with each node, a non-negative real or 

integer number representing the “level of concentration” 
of the gene

• Directed arcs between nodes representing the 
interactions between genes

• Arcs are labeled with {+,-}/{excitation,inhibition}
• Arcs are also labeled with thresholds, i.e.

[u](x)       [v](y)
+, z

[u] activates [v]      if   x > z



A Regulatory Network

• Arcs are also labeled with thresholds, i.e.
[u](x)       [v](y)

+, z
If [u] is active, it  [u] activates [v]  if   x > z

Dynamics: 

A node is “active” if all of its predecessors with excitation conditions are also active

It is inactive if at least one of its predecessors with excitation condition is inactive, or when one of its 
predecessors with inhibition condition is active

Synchronous or asynchronous time may determine and change the state of each node sequentially 

Concentration levels:

We may also label nodes with concentration levels which themselves vary with the dynamics
In this case we are not just interested in the “activation” but also in the “level of activation”



Probability Model

• Notation: Agents or Genes {1, …, n}, t is time

K(t) = (K1 (t), … , Kn (t))  are the concentration levels of the “genes”

x1 , … , xn are the activation thresholds of the “genes”

Gene j is active if Kj (t) > xj (t) 

If a gene or node is “active” it may contribute to activate or disactivate any one of  its successors

More generally we would like to represent  all Boolean dependencies between agents

As we consider continuous time, it is reasonable to assume dynamics where  “one thing happens at 
a time” in some very small interval of time [t, t+Δt]

We develop a formalism that allows us to write equations for the probabilities

P[K,t] = Probability[ K(t) = K | Initial conditions at t=0 ]

and hence for                         P[A(t) = A | Initial conditions at t=0]



The G-Network





G-Network Dynamics and Stationary Solution



Logical Interactions of Agents



Obtaining the Complement – Exact Approach 
Al = U {ΠAi Π[not Aj ]}



The G-Network model provides the structure to model 

Boolean dependencies between agents in 

Conjunctive Normal Form 

AF = U {ΠAi Π[not Aj ]} 
qF = Σ

 
{ Πqi Πρj }



Toy Example of four agents {A0 ,A1 ,A2 ,A3 } 
Ai inhibits [A(i+1)mod4 and A(i+2)mod4 ] 

Interpretation 1: q= 1/(1+2q)= 0.5 
Interpretation 2: q = (1-q)(1-q)= 0.382 

Thus the “semantics” we associate with a regulatory 
network model has to be precisely indicated so as to 

derive the appropriate probabilistic



Computing the Logical Dependencies in 
Gene Regulatory Networks



Electronic Network <-> Random Neural Network 
Future Work: Back to our Origins

o Very Lower Power Ultrafast “Pseudo-Digital” Electronics
o Network of interconnected probabilistic circuits
o Only pulsed signals with negative or positive polarity
o Integrate and fire circuit = Neuron [RC circuit at input, 

followed by transistor, followed by monostable]
o When RC circuit’s output voltage exceeds a threshold, the 

“Neuron’s” output pulse train is a sequence of pulses at the 
characteristic spiking rate (μ) of the neuron

o Frequency dividers (eg flip flops) create appropriate pulse 
trains that emulate the appropriate neural network weights

o Threshold circuits (eg biased diodes and inverters) create 
appropriate positive or negative pulse trains for different 
connections



Micro-Economics 

Auctions in Networks



Vision: The World’s Economy will be governed by Electronic 
Economic Transactions in Cognitive Networks 

Auction: Formal Mechanism that Governs Decisions for 
Economic Transactions or Resource Allocation and 
Exchange 

Cognitive Network: A Computer-Communication Network 
where Resource Allocation including Routing is Achieved by 
Adaptive Procedures that Optimise QoS, Profit or Other 
Criteria



Vision 

The World’s Economy is a “Chain Reaction” of  
Electronic Economic Transactions 

Users and Services, Buyers and Sellers, are 
Agents with Interchangeable Roles 

Computer Networks are the Infrastructure of the 
World Economy 

Networks are Becoming Autonomic and 
Cognitive



Auctions – Economic mechanisms which have been studied 
both in Economic Theory and in Computer Science 

- Guo, X. 2002. An optimal strategy for sellers in an online auction. ACM Trans. 
Internet Tech. 2 (1): 1–13. 

- Hajiaghayi, M. T., Kleinberg, R., and Parkes, D. C. 2004. Adaptive limited-supply 
online auctions. Proc. 5th ACM Conference on Electronic Commerce, May 17-20, 
71–90. 

- McAfee, R. P. and McMillan, J. 1987. Auctions and bidding. J. Economic 
Literature 25: 699–738. 

- Milgrom, P. R. and Weber, R. 1982. A theory of auctions and competitive 
bidding. Econometrica 50: 1089–1122. 

- Shehory, O. 2002. Optimal bidding in multiple concurrent auctions. International 
Journal of Cooperative Information Systems 11 (3-4): 315–327. 

- Gelenbe, E.  2008. Networked Auctions. In press  ACM Trans. Internet Tech.



Auctions 

Cognitive 
Networks



Auctions have Many Buyers (Bidders) and Sellers – 
Leading to Interesting Research Questions

- Mechanisms that create incentives: encouraging certain 
behaviours

- Outcome of collective behaviours
- Coordinated buying and selling (cartels, trusts) 
- Rational Bidders
- Adversarial Behaviours (competitors)
- Learning from collective behaviour: observing the buyers and 

sellers  

- Modelling collective behaviour
- Effect of Network QoS on Economic Considerations
- Malicious Behaviours & Protecting the Information Infrastructure



Modeling Auctions

•Decision Framework: An auction System
•The value of the good for the bidders is a r.v. V, whose prob. distribution 
p(v)=P[V=v], which may be unknown to the seller
•Buyers will not bid above the value they associate with the good, but 
V=infinity is possible ( .. I am willing to buy it at any price .. )

•The seller observes the bids, and after each bid waits for some time 
before accepting the bid; a new bid may arrive in the meanwhile, and 
the process repeats itself
•How and when should the seller accept the bid?
•What is the probabilistic outcome of such a system, in terms of the 
expected price that the good brings in, or the time it takes to sell the 
good, or the income generated per unit time?
•How can the seller learn the value of the good and act accordingly?
•How can bidders also adapt their behaviour to get the best price?
•How can buyers take advantage of multiple Networked Auctions?



The Secretary or Sultan’s Dowry Problem .. Related but Different
Martin Gardner, Scientific American, 1960:

•A sequence of candidates show up, each of value or quality C1 , C2 , .. 
, Cn , .. which are r.v.’s

•The buyer’s purpose is to select one of these whose quality is close to 
the maximum quality

•The buyer observes the sequence for a finite time, hoping to wait long 
enough to select the best ..  and selects the k-th, after which the 
decision is irrevocable

•What is the probability that the one selected is the optimum?

•The outcome will select the best with probability 1/e

•Y.S. Chow et al., Israel J. Math. 2, 81-90, 1964

•S.R. Finch “Optimal stopping constants”, in Mathematical Constants, 
Cambridge Univ. Press, 361-363, 2003



An Auction

For a fixed value v of the “good” we have a state space {0,1, … ,v,A1 , 
… , Av } where i represents the value that is attained after the i-th bid, 
while Ai is the state entered after the i-th bid is accepted – the 0-state 
is a “rest state” after a particular auction is complete

The random process representing the current state of, or value 
attained by, the auction is Yt ; alternately  Xt is the index of the bid 
and f(Yt) may be the monetary value

0<t1 < … < tn < … , are instants at which the auction starts, with auction 
end times at  tn +En < tn+1 when the buyer accepts the offer, and rest 
times Rn =tn+1 - [tn+En ] 



Increments offered by successive bidders within any one auction are random 
variables X1 , … , Xi , … that may depend on the auction number n  .. Xni etc.

The time between the arrival of successive bids are r.v. {Tni }

After bid “ni” is received, the seller will wait some “think” or decision time Dni , 
after which it will accept the bid if Dni < Tn,i+1 , or consider the next bid if Dni > 
Tn,i+1 unless a new bid arrives

If there is reneging or balking, the most recent bid may be revoked after some 
time Bni if Bni < Dni . If the bid is revoked by the highest bidder, then the next 
highest un-revoked bid becomes the valid bid, and may also be reneged, 
etc.



The price attained during the n-th auction will then be the r.v.

Qn = ΣΝ(n)
i=1 Xni

Furthermore bids may be a function of the value attained by the good during 
the preceding bid, e.g.

X n, K+1 = g n, K+1 (Σk
i=1 Xn i  )

or a function of the value Vn of the good as well, e.g.

Xn, K+1 = g n, K+1 (Un , Σk
i=1 Xn i  ), or more specifically

Xn, K+1 = g n, K+1 (Un - Σk
i=1 Xn i  )



Analytical Results
Bids arrive to an auction according to a Poisson process; 1/ λ

 
is the average 

time between successive bids

- 1/δ
 

is the average time that the seller waits before accepting a bid 
(possible decision variable) – the corresponding time is an exponentially 
distributed r.v.

- 1/r is the average rest period after the end of an auction and before the 
next auction restarts. Without loss of generality r=1; this time can have a 
general distribution

- Assume there is no balking or reneging

- The value of the good is fixed to a given r.v. V with arbitrary distribution 
function, identical at each successive auction

- Then after analysis
E[ Sale price | V=v ] = [1-ρv]/[1-ρ] < v,  ρ = λ/(λ+δ)
E[ Income per unit time ] 

= (1- E[ρV]
 

) λr(λ+δ)/(λr+λδ+rδ)



The results generalize to iid bid sizes, and to other models in which a 
Markov renewal structure can be exploited 

E[Sale price| V=v ]=E[X] [1-ρv]/[1-ρ] < vE[X],  
ρ = λ/(λ+δ)

E[Sale price| V=v ]=[1-ρv]/[1-ρ] Σv
l=1 Xl

E[Income per unit time]= E[X](1-E[ρV])λr(λ+δ)/(λr+λδ+rδ)

For the Vickrey auction where the good is sold to the highest bidder at 
the second highest price:

E[Sale price| V=v ]=E[X] ρ{[1-ρv-1]/[1-ρ]+δ/λ}



Auctions with a minimum sale price s:

E[Sale price| V=v ]=E[X] ρ
 

{λs [1-ρv-s]/δ
 

+ s}

where ρ = λs /(λs + δ) 

When the un-successful bidder re-bids with probability p and new 
bidders arive at rate γ:

λ = γ
 

+ λ
 

p [Φ
 

– 1]/ Φ = γ
 

[1-p+p/ Φ]



Income per unit time vs rate δ
 

at which decisions are made for a high 8
down to low 2 (bottom) rate at which bids arrive. The value of the good

Is uniformly distributed between 80 and 100 units



Income per unit time vs rate δ
 

at which decisions are made for an
English auction with unit increments: comparison of the effect of the arrival rate of bids.

The value of the good is uniformly distributed between 80 and 100 units



Comparison of the effect of a uniformly distributed and Poisson distributed
value of the good on the Income per Unit Time





Income per unit time vs rate δ
 

at which decisions are made for the
English and Vickrey auctions with unit increments. The arrival rate of bids is 

4 (above) and 2 (bottom). The value of the good
Is uniformly distributed between 80 and 100 units
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Smart Price Formation

EFFECTIVEEFFECTIVE
SALE PRICE   SALE PRICE   

S = E[V] / S = E[V] / εε

BIDDERS
BID AT 
RATE 

λ



Smart Price Formation by Watching the 
Market

Sv = E[ Sale price| V=v ] < v

Sv =[1-ρv]/[1-ρ],  where ρ = λ/(λ+δ) <1

S=E[Sale price] = (1-E[ρV])/[1-ρ] < E[V]

v = v = εε
 

SSvv , or S = E[V]/, or S = E[V]/ε,  ε>1ε,  ε>1

If buyers are careful, then If buyers are careful, then ε  ε  will be largerwill be larger



If the bidders select value distribution such as 
P(V=v)= αv-1(1−α), v>0, α<1, 

Then E[V]= 1/(1−α), Ε[ρV]=ρ(1−α)/(1−αρ), 
S= 1/(1−ρα)    E[V] = S.ε

ε>1: ρ = ε(S - 1)/(εS - 1) < 1
Once ε and either E[V] or S are known,

the bidding rate or the decision rate, or their 
relationship, are set via ρ=1/(1+δ/λ) 

Smart Price Formation



Networked Auctions

N Physically (Network) Interconnected Auctions for the same good
 

(n(t),k(t))

• A client can only be at one of these auctions at a given instant of time

• n(t) = (n1

 

(t), …
 

, nN

 

(t)) where ni

 

(t) is the number of bidders at auction i 

• k(t) = (k1

 

(t), …
 

, kN

 

(t)) where ki

 

(t) is the price currently attained at auction i

• ki

 

(t) > 0 implies that ni

 

(t)>0

• ni

 

(t)=0 implies that ki

 

(t)=0,

• While when ni

 

(t)>0 then ki

 

(t)>0

• The Mobile Bidder Model
 

–
 

a bidder at auction i who does not have an outstanding (made 
but not yet accepted) bid may move from auction i to auction j with probability P(i,j) or 
leave the auction system with probability P(i,N+1)



Networked Auctions
• γ

 
= (γ

 
1 , … , γ

 
N ) where γi is the external arrival rate of bidders at auction i 

• μ
 

i >0; the departure rate of bidders from auction i is:
μi (y,x) = (y-1) μi , if x>0
μi (y,0) = yμi

• The value of the good at auction i is the r.v.  Vi with ψI (x) = P[Vi > x] and 
ψI (0) = 1

• β
 

i >0; the departure rate of bidders from auction i is:
β

 
i (y,x) = (y-1) βI ψI (x), if x>0

βi (y,0) = y ψI (0)

• The rate at which bids are accepted at auction I is δi

•Rates are inverses of average values of exponentially distributed iid random 
variables





Equations 
for the Numbers of Bidders



Analytical Solution for Active Bidders



Active Bidders’ Model
Given the Value of the Good



Sensible Bidding Policies

SBP:

SBP2:

pi =
(Vi − Si)

+ /Ri

(Vi − Si)
+ /Ri

i=1

n

∑

pi =
(Vi − Si)

+ * (Vi − Pi)
+ /Ri

(Vi − Si)
+ * (Vi − Pi)

+ /Ri
i=1

n

∑

i: The auction number
V_i: Item’s value
Sit : Most recently observed 
selling price at auction I
Si Sitα + Si(1-α): Historical 
average of selling price
P_i: current bid

R_i= D_i+G_i : effective time for 
reaching the seller
D_i: seller’s decision time
G_i: CPN goal



Implementation 
via Autonomic 

Agents 
EU FP6 

Cascadas



Average Income  $/sec



Average Unsuccessful Bids



Average Bids per/sec



Average unsuccessful bids per/sec



Conclusions

The World’s Economy is a “Chain Reaction” of  
Electronic Transactions 

Prices are Formed by feedback between 
markets and individual electronic age 

Queuing network type models provide insight 
into price formation



Conclusions
G-Networks Provide Insight into a Wide 
Variety of Real Systems, such as: 

- Communication Networks with Controls 
- Load Balancing in Distributed Systems 
- Communication in Neuronal Ensembles 
- Communication in Gene Networks 
- Chemical Reactions 

They are also a new tool to study the 
Networked Economy



http://san.ee.ic.ac.uk
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