

Journées scientifiques du LAAS-CNRS 40ème anniversaire 7, 8 et 9 Octobre 2008

Electromagnetism and Multi-scale Structures

Hervé Aubert

LAAS-CNRS, Toulouse University, France INPT-ENSEEIHT, Toulouse, France

EXAMPLE : RECONFIGURABLE REFLECTARRAY WITH NON-IDENTICAL CELLS

MEMS-Controlled Phase shifter Elements for a Linearly Polarised Reflectarray (*)

(*) Cadoret D., Laisne A., Gillard R. and Legay H., Microwave and Optical Technological Letters (2005)

Top view

 $2^{10} = 1024 \text{ ON/OFF}$ states configurations for achieving the

phase-shift range of 360°

Visualization of the muliple scale levels

Typical numerical problems when modeling multi-scale structures

Classical meshing-based techniques :

- ✓ Ill-conditioned matrices
- ✓ Numerical convergence problem and/or very time-consuming

Hybrid techniques (Global modeling) :

✓ Connections may be delicate from a theoretical and practical points of view

Need for new theoretical approaches for the modeling and design of multi-scale structures

Scale Changing Technique (SCT) : monolithic (unique) formulation

Scale Changing Technique (SCT)

Time-harmonic electromagnetic field

1. partitioning process

Scale level s

hierarchical domain-decomposition

Example :

$$\begin{bmatrix} \nabla_{T}^{2} + k_{n}^{(s)^{2}} \end{bmatrix} \vec{F}_{n}^{(s)} = \vec{0}$$

B.C. along C_s

and

Tangential electric field in D_s : smooth variations

 $V_n^{(s)} \vec{F}_n^{(s)}$

$$\vec{E}^{(s)} = \sum_{n=1}^{\infty} V_n^{(s)} \vec{F}_n^{(s)} = \sum_{n=1}^{N^{(s)}} V_n^{(s)} \vec{F}_n^{(s)}$$

Linear combination of few lower-order modes in D_s

Participate in the description of the coupling between smaller sub-domains in D_s Fine-scale (spatially localized)

 $N^{(S)} + 1$

Linear combination of an infinite number of higher-order modes in D_S

+

Contributes significantly to the representation of the field only in the vicinity of discontinuities and sharp edges

« Active » modes

« Passive » modes

3. Derivation of the "Scale-Changing Network" *

 \implies Active modes in D_S and D_{s-1} are taken as field excitations:

• "Scale-Changing Sources" at the large scale D_s

 $\vec{J}^{(s)} = \sum_{n=1}^{N^{(s)}} I_n^{(s)} \vec{F}_n^{(s)}$ Known combination of active modes

$$\hat{Y}^{(s)} = \sum_{n=N^{(s)}+1}^{\infty} \left| \vec{F}_{n}^{(s)} \right\rangle \underbrace{Y_{n}^{(s)}}_{I} \left\langle \vec{F}_{n}^{(s)} \right|$$

Passive mode are shunted by their modal admittance

• "Scale-Changing Sources" at the smaller scale D_{S-1}

$$\vec{J}^{(s-1)} \vec{J}^{(s-1)} \vec{E}^{(s-1)}$$

$$\vec{J}^{(s-1)} = \sum_{n=1}^{N^{(s-1)}} I_n^{(s-1)} \vec{F}_n^{(s-1)}$$
active modes

\Rightarrow Formulation of the boundary value problem in D_s

• Equivalent circuits that model the boundary conditions :

in the perfect electric conductors domain

in the lossless dielectric domain

in the sub-domain D_{S-1}

• Equivalent network representation of B.C. in the domain D_s

• Derivation of the boundary value problem

Kirchhoff's and Ohm's laws applied to the equivalent network :

$$\begin{bmatrix} \vec{E}^{(s)} \\ \vec{E}^{(s-1)} \\ \vec{j}^{(s-1)} \\ j_{diel}^{(s)} \end{bmatrix} = \begin{bmatrix} 0 & 0 & \hat{1} & \hat{1} \\ 0 & 0 & \hat{1} & 0 \\ -\hat{1} & -\hat{1} & \hat{Y}^{(s)} & \hat{Y}^{(s)} \\ -\hat{1} & 0 & \hat{Y}^{(s)} & \hat{Y}^{(s)} \end{bmatrix} \begin{bmatrix} \vec{J}^{(s)} \\ \vec{J}^{(s-1)} \\ \vec{e}^{(s-1)} \\ \vec{e}^{(s)} \\ \vec{e}^{(s)} \\ \vec{e}^{(s)} \\ \vec{e}^{(s)} \\ \vec{e}^{(s)} \end{bmatrix}$$

with $\vec{e}^{(s-1)}$ and $\vec{e}^{(s)}_{diel}$ virtual sources, i.e.:
$$\begin{cases} \vec{j}^{(s-1)} = \vec{0} & \text{in sub-domain } D^{(s-1)} \\ \vec{j}_{diel} & = \vec{0} & \text{in the dielectric domain} \end{cases}$$

• Numerical resolution by applying Galerkin's method

Choice of two sets of entire-domain trial functions for the expansion of the two (unknown) virtual sources :

Key advantages of the Scale Changing Technique

- ✓ Judicious partitioning of the discontinuity plane avoids critical aspect ratios
- \checkmark Fine description of the electromagnetic field at each scale may be reached
- ✓ Modifications of the geometry at a given scale does not require the recalculation of the overall structure (modular approach)
- ✓ Scale changing networks are computed separately : highly parallelizable

Difficulties

- \checkmark Systematic convergence studies on the number of modes are required
- \checkmark No systematic rules for the choice of the boundary conditions

Example No1 : MEMS-controlled planar Phase-shifter *

- —) Experimental data (waveguide simulator technique)
- (xxxx) Scale-Changing Technique

* From E. Perret, H. Aubert, H. Legay, IEEE Trans. On Microwave Theory and Tech. (2006)

* From D. Voyer, H. Aubert, J. David, Electronics Letters, Feb. 2005

Exemple No3: Multi-Frequency Selective Surface *

* From D. Voyer, H. Aubert, J. David, IEEE Trans. Antennas Propagat. (Oct. 2006)

Example No4 : Finite-size multi-frequency selective surface *

* From D. Voyer, H. Aubert, J. David, IEEE Trans. Antennas Propagat. (Oct. 2006)

The applications of SCT for the electromagnetic simulation of ...

1. Active antennas in non linear regime

Hybridization of SCT with the Multi-domain approach in collaboration with ONERA, PhD. Studies funded by Thalès (2005-2008)

2. Reflectarrays with coupled dissemblable cells

PhD. Studies funded by Thalès/Midi-Pyrénées Regional Council (2006-2009)

3. Very Large Structures

BQR PRES Toulouse in collaboration with IRIT (2009)

4. Multi-scale structures

Implementation of SCT in Grid Computing environment ANR Project : Multi-scale modeling: from Electromagnetism to the GRID in collaboration with ID Lab. Grenoble (2007-2010)

5. Periodical Frequency Selective surfaces PhD. Studies funded by CNES (2007-2010)

The future of the Scale-Changing Technique (SCT)

1. Hybridization of SCT with full-wave 3D techniques (TLM, Multi-domain approach) *Complex structures 3D*

2. Implementation of SCT in Grid Computing environment *"Scale-driven" scheduler*