# Automata-based decentralised diagnosis of discrete events systems

Yannick Pencolé, Marie-Odile Cordier, Laurence Rozé,... and Alban Grastien

(thanks to the slides of Yannick)



#### Outline

Context

Decentralised modeling

Decentralised diagnosis

# Systems to diagnose: the Magda context

#### Supervision center



#### **Observations**



- Observation channels
  - Different propagation delays
- Observation = reception of a message by a sensor from a component
- Order of reception ≠ order of emission

### Observations: partial order

- O: set of observations
  - Observation = message + date
- O ≤
  - Partial order relation on the observations
  - Based on the observability



#### Diagnosis

- The behaviors on the model that explain the observations
  - Synchronisation of the model and the observations
  - Represented by an automaton (for efficiency)

#### What do we want?

 A unique supervisor ⇒ centralised approach

A modeling by automata

# Diagnoser approach [Sampath et al.] [Rozé et al.]

- O Advantage:
  - Efficient computation
- Problem: impossible to compute
  - N components
  - 2<sup>N</sup> states in the model
  - 2<sup>2<sup>N</sup></sup> states in the diagnoser
- → Decentralised approach

#### Outline

Context

Decentralised modeling

Decentralised diagnosis

# Model of a component (example) [Pencolé *et al.*]



- Exo<sub>i</sub>: F1 F2, Rcv<sub>i</sub>: I21
- Emit<sub>i</sub>: I12, Obs<sub>i</sub>: O11 O12

### Model of a component (formal)

$$\Gamma_i = (\Sigma_{dec}^i, \Sigma_{émis}^i, Q_i, E_i)$$

- $\Sigma_{dec}^{i}$  set of received messages (Exo<sub>i</sub>,Rcv<sub>i</sub>)
- $\Sigma_{\acute{e}mis}^{i}$  set of emitted messages (Emit<sub>i</sub>,Obs<sub>i</sub>)
- $\circ Q_i$  set of states
- $\circ$   $E_i$  set of transitions

### Model of the system $\Gamma = \{\Gamma_1, ..., \Gamma_n\}$



- Implicit topology
- Synchronous communications!!

# In Laurence Rozé's and Alban Grastien's modelings

- Each component has a set of ports
- An event is a pair (message,port)
- The topology is explicit
- Still synchronous
- The global model is computed in Laurence Rozé's works

# Conclusion on decentralised modeling by automata

- Global model || Γ||
  - Size exponential in the number of components ⇒ Impossible to compute
- Decentralised model
  - Size linear in the number of components
- Easy to model the reconfigurations

#### Outline

Context

Decentralised modeling

Decentralised diagnosis

# Principe of the decentralised approach for diagnosis



### Local diagnosis

Example: observation O12



# Merging operation Compute $\Delta_{\{\gamma_1,\gamma_2\}}$

- Compute the diagnosis of  $\gamma = \{\gamma_1, \gamma_2\}$
- $\circ$  Use the local diagnoses  $\Delta_{\gamma 1}$  and  $\Delta_{\gamma 2}$
- Synchronise the emissions and receptions of messages
- Check the order of the observations

### Merging operation





F1/{ }, F3/{ } independent



### Merging strategy

- The merging may be not efficient!
- We use a dynamic strategy to choose which diagnoses to merge
  - merge dependant diagnoses
  - detect incompatible paths
- The less I merge, the more efficient I am! (Yannick P.)

#### Properties of the approach

- Decentralised model
  - Synchronous communications
- Decentralised diagnosis
  - Deals with partially ordered observations
  - Efficiently deals with concurrency
  - Use a merging strategy

#### Prospects

- o Online diagnosis [Pencolé et al.]
  - Incremental diagnosis
- Modeling [Grastien et al.04] and diagnosis [Grastien et al.??] of reconfigurable systems
  - Easy to represent the modification of the topology or the components